Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Crop simulation models as decision tools to enhance agricultural system productivity and sustainability – a critical review

Koushik Banerjee, Suman Dutta, Sumanta Das and Rahul Sadhukhan
Technology in Agronomy 5 (1) (2025)
https://doi.org/10.48130/tia-0024-0032

Interpretable Machine Learning for Legume Yield Prediction Using Satellite Remote Sensing Data

Theodoros Petropoulos, Lefteris Benos, Remigio Berruto, Gabriele Miserendino, Vasso Marinoudi, Patrizia Busato, Chrysostomos Zisis and Dionysis Bochtis
Applied Sciences 15 (13) 7074 (2025)
https://doi.org/10.3390/app15137074

Status of crop water use efficiency evaluation methods: A review

Tianxue Wang, Shikun Sun, Yali Yin, Jinfeng Zhao, Yihe Tang, Yubao Wang, Fei Gao and Xiaobo Luan
Agricultural and Forest Meteorology 349 109961 (2024)
https://doi.org/10.1016/j.agrformet.2024.109961

Assimilating Satellite-Based Biophysical Variables Data into AquaCrop Model for Silage Maize Yield Estimation Using Water Cycle Algorithm

Elahe Akbari, Ali Darvishi Boloorani, Jochem Verrelst and Stefano Pignatti
Remote Sensing 16 (24) 4665 (2024)
https://doi.org/10.3390/rs16244665

Use of remote sensing-derived fPAR data in a grapevine simulation model for estimating vine biomass accumulation and yield variability at sub-field level

L. Leolini, S. Bregaglio, F. Ginaldi, S. Costafreda-Aumedes, S. F. Di Gennaro, A. Matese, F. Maselli, G. Caruso, G. Palai, S. Bajocco, M. Bindi and M. Moriondo
Precision Agriculture 24 (2) 705 (2023)
https://doi.org/10.1007/s11119-022-09970-8

NORNE, a process-based grass growth model accounting for within-field soil variation using remote sensing for in-season corrections

Anne-Grete Roer Hjelkrem, Jakob Geipel, Anne Kjersti Bakken and Audun Korsaeth
Ecological Modelling 483 110433 (2023)
https://doi.org/10.1016/j.ecolmodel.2023.110433

Combined analysis of satellite and ground data for winter wheat yield forecasting

Camilla Broms, Mikael Nilsson, Andreas Oxenstierna, Alexandros Sopasakis and Karl Åström
Smart Agricultural Technology 3 100107 (2023)
https://doi.org/10.1016/j.atech.2022.100107

Evaluation of MODIS, Landsat 8 and Sentinel-2 Data for Accurate Crop Yield Predictions: A Case Study Using STARFM NDVI in Bavaria, Germany

Maninder Singh Dhillon, Carina Kübert-Flock, Thorsten Dahms, Thomas Rummler, Joel Arnault, Ingolf Steffan-Dewenter and Tobias Ullmann
Remote Sensing 15 (7) 1830 (2023)
https://doi.org/10.3390/rs15071830

Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape

Maninder Singh Dhillon, Thorsten Dahms, Carina Kuebert-Flock, Thomas Rummler, Joel Arnault, Ingolf Steffan-Dewenter and Tobias Ullmann
Frontiers in Remote Sensing 3 (2023)
https://doi.org/10.3389/frsen.2022.1010978

Crop yield estimation based on assimilation of crop models and remote sensing data: A systematic evaluation

Li Luo, Shikun Sun, Jing Xue, Zihan Gao, Jinfeng Zhao, Yali Yin, Fei Gao and Xiaobo Luan
Agricultural Systems 210 103711 (2023)
https://doi.org/10.1016/j.agsy.2023.103711

Challenges and opportunities in crop simulation modelling under seasonal and projected climate change scenarios for crop production in South Africa

Priscilla Ntuchu Kephe, Kingsley Kwabena Ayisi and Brilliant Mareme Petja
Agriculture & Food Security 10 (1) (2021)
https://doi.org/10.1186/s40066-020-00283-5

STICS crop model and Sentinel-2 images for monitoring rice growth and yield in the Camargue region

Dominique Courault, Laure Hossard, Valérie Demarez, Hélène Dechatre, Kamran Irfan, Nicolas Baghdadi, Fabrice Flamain and Françoise Ruget
Agronomy for Sustainable Development 41 (4) (2021)
https://doi.org/10.1007/s13593-021-00697-w

Assessing the fidelity of Landsat-based fAPAR models in two diverse sugarcane growing regions

S.J. Muller, P. Sithole, A. Singels and A. Van Niekerk
Computers and Electronics in Agriculture 170 105248 (2020)
https://doi.org/10.1016/j.compag.2020.105248

Improving regional wheat yields estimations by multi-step-assimilating of a crop model with multi-source data

Zhao Zhang, Ziyue Li, Yi Chen, Lingyan Zhang and Fulu Tao
Agricultural and Forest Meteorology 290 107993 (2020)
https://doi.org/10.1016/j.agrformet.2020.107993

Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany

Maninder Singh Dhillon, Thorsten Dahms, Carina Kuebert-Flock, Erik Borg, Christopher Conrad and Tobias Ullmann
Remote Sensing 12 (11) 1819 (2020)
https://doi.org/10.3390/rs12111819

Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan

Nguyen-Thanh Son, Chi-Farn Chen, Cheng-Ru Chen, et al.
International Journal of Remote Sensing 41 (20) 7868 (2020)
https://doi.org/10.1080/01431161.2020.1766148

Contribution of Remote Sensing on Crop Models: A Review

Dimitrios Kasampalis, Thomas Alexandridis, Chetan Deva, Andrew Challinor, Dimitrios Moshou and Georgios Zalidis
Journal of Imaging 4 (4) 52 (2018)
https://doi.org/10.3390/jimaging4040052

Computational Science and Its Applications – ICCSA 2018

Giuseppe Peschechera and Umberto Fratino
Lecture Notes in Computer Science, Computational Science and Its Applications – ICCSA 2018 10964 294 (2018)
https://doi.org/10.1007/978-3-319-95174-4_24

Linking process-based potato models with light reflectance data: Does model complexity enhance yield prediction accuracy?

R. Quiroz, H. Loayza, C. Barreda, et al.
European Journal of Agronomy 82 104 (2017)
https://doi.org/10.1016/j.eja.2016.10.008

Computational Science and Its Applications – ICCSA 2017

Giuseppe Peschechera, Antonio Novelli, Grazia Caradonna and Umberto Fratino
Lecture Notes in Computer Science, Computational Science and Its Applications – ICCSA 2017 10407 16 (2017)
https://doi.org/10.1007/978-3-319-62401-3_2

Toward a Satellite-Based System of Sugarcane Yield Estimation and Forecasting in Smallholder Farming Conditions: A Case Study on Reunion Island

Julien Morel, Pierre Todoroff, Agnès Bégué, Aurore Bury, Jean-François Martiné and Michel Petit
Remote Sensing 6 (7) 6620 (2014)
https://doi.org/10.3390/rs6076620

A three-source SVAT modeling of evaporation: Application to the seasonal dynamics of a grassed vineyard

Carlo Montes, Jean-Paul Lhomme, Jérôme Demarty, Laurent Prévot and Frédéric Jacob
Agricultural and Forest Meteorology 191 64 (2014)
https://doi.org/10.1016/j.agrformet.2014.02.004

Coupling a sugarcane crop model with the remotely sensed time series of fIPAR to optimise the yield estimation

Julien Morel, Agnès Bégué, Pierre Todoroff, et al.
European Journal of Agronomy 61 60 (2014)
https://doi.org/10.1016/j.eja.2014.08.004

Quantitative plant resistance in cultivar mixtures: wheat yellow rust as a modeling case study

Natalia Sapoukhina, Sophie Paillard, Françoise Dedryver and Claude de Vallavieille‐Pope
New Phytologist 200 (3) 888 (2013)
https://doi.org/10.1111/nph.12413

Comparison and Analysis of Data Assimilation Algorithms for Predicting the Leaf Area Index of Crop Canopies

Yingying Dong, Jihua Wang, Cunjun Li, et al.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 6 (1) 188 (2013)
https://doi.org/10.1109/JSTARS.2012.2208943

Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation

Yingying Dong, Chunjiang Zhao, Guijun Yang, et al.
Mathematical and Computer Modelling 58 (3-4) 877 (2013)
https://doi.org/10.1016/j.mcm.2012.12.013

Forcing a wheat crop model with LAI data to access agronomic variables: Evaluation of the impact of model and LAI uncertainties and comparison with an empirical approach

R. Casa, H. Varella, S. Buis, et al.
European Journal of Agronomy 37 (1) 1 (2012)
https://doi.org/10.1016/j.eja.2011.09.004

New approach in modeling spring wheat yielding based on dry periods

Wiesław Szulczewski, Andrzej Żyromski and Małgorzata Biniak-Pieróg
Agricultural Water Management 103 105 (2012)
https://doi.org/10.1016/j.agwat.2011.10.023

A Comparison of Leaf Area Index Maps Derived from Multi-Sensor Optical Data Acquired over Agricultural Areas

Giuseppe Satalino, Francesco Mattia, Anna Balenzano, Michele Rinaldi, Sergio Ruggieri and Pasquale Garofalo
Italian Journal of Agronomy 5 (2) 167 (2010)
https://doi.org/10.4081/ija.2010.167

Spatio-temporal variability of sugarcane fields and recommendations for yield forecast using NDVI

A. Bégué, V. Lebourgeois, E. Bappel, et al.
International Journal of Remote Sensing 31 (20) 5391 (2010)
https://doi.org/10.1080/01431160903349057

A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index

Benoît Duchemin, Philippe Maisongrande, Gilles Boulet and Iskander Benhadj
Environmental Modelling & Software 23 (7) 876 (2008)
https://doi.org/10.1016/j.envsoft.2007.10.003

Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data

M.C. González-Sanpedro, T. Le Toan, J. Moreno, L. Kergoat and E. Rubio
Remote Sensing of Environment 112 (3) 810 (2008)
https://doi.org/10.1016/j.rse.2007.06.018

Monitoring of irrigated wheat in a semi‐arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency

R. Hadria, B. Duchemin, A. Lahrouni, et al.
International Journal of Remote Sensing 27 (6) 1093 (2006)
https://doi.org/10.1080/01431160500382980

Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices

B. Duchemin, R. Hadria, S. Erraki, et al.
Agricultural Water Management 79 (1) 1 (2006)
https://doi.org/10.1016/j.agwat.2005.02.013

Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models

A. Olioso, Y. Inoue, S. Ortega-FARIAS, J. Demarty, J.-P. Wigneron, I. Braud, F. Jacob, P. Lecharpentier, C. OttlÉ, J.-C. Calvet and N. Brisson
Irrigation and Drainage Systems 19 (3-4) 377 (2005)
https://doi.org/10.1007/s10795-005-8143-z

Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications

Marie Launay and Martine Guerif
Agriculture, Ecosystems & Environment 111 (1-4) 321 (2005)
https://doi.org/10.1016/j.agee.2005.06.005