Open Access
Review
Issue
Agron. Sustain. Dev.
Volume 30, Number 2, April-June 2010
Page(s) 201 - 214
DOI https://doi.org/10.1051/agro/2009034
Published online 16 April 2010
  • Angelini L.G., Ceccarini L., Di Nasso N.N., Bonari E. (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance, Biomass Bioenerg. 33, 635–643. [CrossRef] [Google Scholar]
  • Aspinal D. (1961). The control of tillering in the barley plant I. The pattern of tillering and its relation to nutrient supply, Aust. J. Biol. Sci. 14, 93–505. [Google Scholar]
  • Beale C.V., Long S.P. (1995) Can perennial C4 grasses attain high efficiencies of radiant energy-conversion in cool climates, Plant Cell Environ. 18, 641–650. [CrossRef] [Google Scholar]
  • Beale C.V., Long S.P. (1997) Seasonal dynamics of nutrient accumulation and partitioning in the perennial C-4-grasses Miscanthus × Giganteus and Spartina Cynosuroides, Biomass Bioenerg. 12, 419–428. [CrossRef] [Google Scholar]
  • Beale C.V., Bint D.A., Long S.P. (1996) Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England, J. Exp. Bot. 47, 267–273. [CrossRef] [Google Scholar]
  • Beale C.V., Morison J.I.L., Long S.P. (1999) Water use efficiency of C4 perennial grasses in a temperate climate, Agr. Forest Meteorol. 96, 103–115. [CrossRef] [Google Scholar]
  • Benbi D.K., Brar J.S. (2009) A 25-year record of carbon sequestration and soil porperties in intensive agriculture, Agron. Sustain. Dev. 29, 257–265. [Google Scholar]
  • Boehmel C., Lewandowski I., Claupein W. (2008) Comparing annual and perennial energy cropping systems with different management intensities, Agr. Syst. 96, 224–236. [Google Scholar]
  • Bullard M.J., Nixon P.M.I., Cheath M. (1997) Quantifying the yield of Miscanthus × giganteus in the UK, Aspects Appl. Biol. 49, 199–206. [Google Scholar]
  • Cadoux S., Vanderdriessche V., Machet J.M., Mary B., Beaudouin N., Lemaire G., Gosse G. (2008) Potential yield and main limiting factors of Miscanthus giganteus in France. Identification of the needs for further research, in: 16th European Biomass Conference and Exhibition, Valence. [Google Scholar]
  • Ceotto E. (2008) Grasslands for bioenergy production. A review, Agron, Sustain. Dev. 28, 47–55. [Google Scholar]
  • Christian D.G., Haase E. (2001) Agronomy of Miscanthus, in: Jones M., Walsh M. (Eds.), Miscanthus for energy and fibre, James and James, London, UK, pp. 21–45. [Google Scholar]
  • Christian D.G., Poulton P.R., Riche A.B., Yates N.E. (1997) The recovery of 15N fertilizer applied to Miscanthus × giganteus, Biomass Bioenerg. 12, 21–24. [CrossRef] [Google Scholar]
  • Christian D.G., Poulton P.R., Riche A.B., Yates N.E., Todd A.D. (2006) The recovery over several seasons of 15N-labelled fertilizer applied to Miscanthus × giganteus ranging from 1 to 3 years old, Biomass Bioenerg. 30, 125–133. [CrossRef] [Google Scholar]
  • Christian D.G., Riche A.B., Yates N.E. (2008) Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 succissive harvests, Ind. Crop. Prod. 28, 320–327. [CrossRef] [Google Scholar]
  • Christian D.G., Yates N.E., Riche A.B. (2009) Estimation of ramet production from Miscanthus × giganteus rhizome of different ages, Ind. Crop. Prod. 30, 176–178. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Jones M.B. (1997) The thermal response of leaf extension rate in genotypes of the C4-grassMiscanthus: an important factor in determining the potential productivity of different genotypes, J. Exp. Bot. 48, 1573–1581. [Google Scholar]
  • Clifton-Brown J.C., Lewandowski I. (2000a) Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply, Ann. Bot. 86, 191–200. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Lewandowski I. (2000b) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance, New Phytol. 148, 287–294. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Lewandowski I. (2002). Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany, Eur. J. Agron. 16, 97–100. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Lewandowski I., Andersson B., Basch G., Christian D.G., Kjeldsen J.B., Jorgensen U., Mortensen J.V., Riche A.B., Sshwarz K.U., Tatebe K., Teixeira F. (2001a) Performance of 15 Miscanthus genotypes at five sites in Europe, Agron. J. 93, 1013–1019. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Lewandowski I., Bangerth F., Jones M.B. (2002) Comparative responses to water stress in stay-green, rapid- and slow senescing genotypes of the biomass crop, Miscanthus, New Phytol. 154, 335–345. [CrossRef] [Google Scholar]
  • Clifton-Brown J.C., Long S.P., Jorgensen U. (2001b) Miscanthus productivity, in: Jones M., Walsh M. (Eds.), Miscanthus for energy and fibre, James and James, London, UK, pp. 46–67. [Google Scholar]
  • Clifton-Brown J.C., Neilson B., Lewandowski I., Jones M.B. (2000) The modelled productivity of Miscanthus × giganteus (GREEF et DEU) in Ireland, Ind. Crop. Prod. 12, 191–200. [Google Scholar]
  • Clifton-Brown J.C., Stampfl P.F., Jones M.B. (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions, Global Change Biol. 10, 509–518. [CrossRef] [Google Scholar]
  • Cosentino S.L., Patane C., Sanzone E., Copani V., Foti S. (2007) Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment, Ind. Crop. Prod. 25, 75–88. [CrossRef] [Google Scholar]
  • Crutzen P.J., Mosier A.R., Smith K.A., Winiwarter W. (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys. 8, 389–395. [CrossRef] [Google Scholar]
  • Danalatos N.G., Archontoulis S.V., Mitsios I. (2007) Potential growth and biomass productivity of Miscanthus × giganteus as affected by plant density and N-fertilization in central Greece, Biomass Bioenerg. 31, 145–152. [CrossRef] [Google Scholar]
  • DEFRA (2007) Planting and growing Miscanthus, Best practice guidelines, For Applicants to DEFRA’s Energy Crops Scheme. [Google Scholar]
  • Deuter M. (2000) Breeding approaches to improvement of yield and quality in Miscanthus grown in Europe, EMI Project, Final report, pp. 28–52. [Google Scholar]
  • Eckert B., Weber O.B., Gudrun K., Andras H., Marion S., Anton H. (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4- grass Miscanthus, Int. J. Syst. Evol. Microbiol. 51, 17–26. [PubMed] [Google Scholar]
  • Ercoli L., Mariotti M., Masoni A., Bonari E. (1999) Effect of irrigation and nitrogen fertilization on biomass yield and efficiency of energy use in crop production of Miscanthus, Field Crop. Res. 63, 3–11. [CrossRef] [Google Scholar]
  • Farage P., Blowers D., Long S.P., Baker N.R. (2006). Low growth temperature modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus, Plant Cell Environ. 29, 720–728. [CrossRef] [PubMed] [Google Scholar]
  • Farrell A.D., Clifton-Brown J.C., Lewandowski I., Jones M.B. (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus, Ann. Appl. Biol. 149, 337–345. [CrossRef] [Google Scholar]
  • Gillet M. (1980) Les graminées fourragères, Gauthiers-Villars, 306 p. [Google Scholar]
  • Greef J.M., Deuter M. (1993) Syntaxonomy of Miscanthus-X-Giganteus Greef-Et-Deu, Angew. Bot. 67, 87–90. [Google Scholar]
  • Greef J.M., Deuter M., Jung C., Schondelmaier J. (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting, Genet. Resour. Crop Ev. 44, 185–195. [CrossRef] [Google Scholar]
  • Gurtler J. (2007) Biocarburants 2010 : Quelles utilisations des terres en France ? Ed ONIGC. [Google Scholar]
  • Hansen E.M., Christensen B.T., Jensen L.S., Kristensen K. (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13 abundance, Biomass Bioenerg. 26, 97–105. [CrossRef] [Google Scholar]
  • Hastings A., Clifton-Brown J.C., Wattenbach M., Stampfl P., Mitchell C.P., Smith P. (2008) Potential of Miscanthus grasses to provide energy and hence reduce greenhouse gas emissions, Agron. Sustain. Dev. 28, 465–472. [CrossRef] [EDP Sciences] [Google Scholar]
  • Heaton E.A., Clifton-Brown J., Voigt T.B., Jones M.B., Long S.P. (2004) Miscanthus for renewable energy generation: European Union experience and projections for Illinois, Mitigation and Adaptation Strategies for Global Change 9, 21–30. [Google Scholar]
  • Heaton E.A., Dohleman F.G., Long S.P. (2008) Meeting US biofuel goals with less land: the potential of Miscanthus, Global Change Biol. 14, 2000–2014. [CrossRef] [Google Scholar]
  • Himken M., Lammel J., Neukirchen D., Czypionka-Krause U., Olfs H.-W. (1997) Cultivation of Miscanthus under West European conditions: Seasonal changes in dry matter production, nutrient uptake and remobilization, Plant Soil 189, 117–126. [CrossRef] [Google Scholar]
  • Hodkinson T.R., Chase M.W., Renvoize S.A. (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR, Ann. Bot. 89, 627–636. [CrossRef] [PubMed] [Google Scholar]
  • Jezowski S. (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland, Ind. Crop. Prod. 27, 65–68. [CrossRef] [Google Scholar]
  • Jorgensen U., Muhs H. (2001) Miscanthus: Breeding and Improvement, in: Jones M., Walsh M. (Eds.), Miscanthus for energy and fibre, James and James, London, UK, pp. 68–85. [Google Scholar]
  • Jorgensen U., Mortensen J., Ohlsson C. (2003a) Light interception and dry matter conversion efficiency of miscanthus genotypes estimated from spectral reflectance measurements, New Phytol. 157, 263–270. [CrossRef] [Google Scholar]
  • Jorgensen U., Mortensen J., Kjeldsen J.B., Schwarz K.U. (2003b) Establishment, Developement and yield qualoty of fifteen Miscanthus genotypes over three years in Denmark, Acta Agr. Scand. B. S. P. 53, 190–199. [Google Scholar]
  • Kalembasa D., Je£owski S., Pude R., Malinowska E. (2005) The content of carbon, hydrogen and nitrogen in different development stage of some clones of Miscanthus, Pol. J. Soil Sci. 38, 169–177. [Google Scholar]
  • Lewandowski I. (1998) Propagation method as an important factor in the growth and development of Miscanthus × giganteus, Ind. Crop. Prod. 8, 229–245. [CrossRef] [Google Scholar]
  • Lewandowski I. Clifton-Brown J.C. (2000) European Miscanthus Improvement Project (EMI), FAIR3 CT-96-1392, Final Report, 260 p. [Google Scholar]
  • Lewandowski I., Kauter D. (2003) The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use, Ind. Crop. Prod. 17, 103–117. [CrossRef] [Google Scholar]
  • Lewandowski I., Kicherer A. (1997) Combustion quality of biomass: Practical relevance and experiments to modify the biomass quality of Miscanthus × giganteus, Eur. J. Agron. 6, 163–177. [CrossRef] [Google Scholar]
  • Lewandowski I., Schmidt U. (2006) Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach, Agr. Ecosyst. Environ. 112, 335–346. [CrossRef] [Google Scholar]
  • Lewandowski I., Clifton-Brown J.C., Scurlock J.M.O., Huisman W. (2000) Miscanthus: European experience with a novel energy crop, Biomass Bioenerg. 19. [Google Scholar]
  • Lewandowski I., Kicherer A., Vonier P. (1995) Co2-Balance for the Cultivation and Combustion of Miscanthus, Biomass Bioenerg. 8, 81–90. [CrossRef] [Google Scholar]
  • Lewandowski I., Scurlock J.M.O., Lindvall E., Christou M. (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass Bioenerg. 25, 335–361. [CrossRef] [Google Scholar]
  • Lewitt J. (1980) Responses of Plants to Environmental Stresses, Vol. 1, Academic Press, New York, pp. 87–90. [Google Scholar]
  • Linde-Laursen I. (1993) Cytogenetic analysis of Miscanthus ’Giganteus’, an interspecific hybrid, Hereditas 119, 297–300. [CrossRef] [Google Scholar]
  • Long S.P., Beale C.V. (2001) Resource Capture by Miscanthus, in: Jones M., Walsh M. (Eds.), Miscanthus for energy and fibre, James and James, London, UK, pp. 10–20. [Google Scholar]
  • Miyamoto T., Kawahar M., Minalisawa K. (2004) Novel Endophytic Nitrogen-fixing Clostridia from grass Miscanthus sinensis as reveled by terminal restriction fragment lenght polymorphism analysis, Appl. Environ. Microbiol. 70, 6580–6586. [CrossRef] [PubMed] [Google Scholar]
  • Naidu S.L., Moose S.P., Al-Shoaibi A.K., Raines C.A., Long S.P. (2003) Cold tolerance of C4 photosynthesis in Miscanthus × giganteus: Adaptation in amounts and sequence of C4 photosynthetic enzymes, Plant Physiol. 132, 1688–1697. [CrossRef] [PubMed] [Google Scholar]
  • Plazek A., Dubert F., Marzec K. (2009) Cell membrane permeability and antioxidant activities in the rootstocks of Miscanthus × giganteus as an effect of cold and frost treatment, J. Appl. Bot. Food Quality 82, 158–162. [Google Scholar]
  • Price L., Bullard M.J., Lyons H., Anthony S., Nixon P.M.I. (2004) Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of M. × giganteus biomass productivity across England and Wales, Biomass Bioenerg. 26, 3–13. [CrossRef] [Google Scholar]
  • Ritchter G.M., Riche A.B., Dailey A.G., Gezan S.A., Powlson D.S. (2008) Is UK biofuel supply from Miscanthus water-limited? Soil Use Manage. 24, 235–245. [CrossRef] [Google Scholar]
  • Sage R.F, Kubien D.S. (2007) The temperature response of C3 and C4 photosynthesis, Plant Cell Environ. 30, 1086–1106. [CrossRef] [PubMed] [Google Scholar]
  • Schwarz K.U, Murphy D.P.L., Schnug E. (1994) Studies of the growth and yield of Miscanthus × giganteus in Germany, Aspects Appl. Biol. 40, 533–540. [Google Scholar]
  • Shoji S., Kurebayashi T., Yamada I. (1990) Growth and chemical composition of Japanese pampas grass (Miscanthus sinensis) with special reference to the formation of dark-colored andisols in northeastern Japan, Soil Sci. Plant Nutr. 36, 105–120. [Google Scholar]
  • Stewart J.R., Toma Y., Fernandez F.G., Nishiwaki A., Yamada T., Bollero G. (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review, Global Change Biol. 1, 126–153. [Google Scholar]
  • Tayot X., Chartier M., Varlet-Grancher C., Lemaire G. (1995) Potential above-ground dry matter production of miscanthus in north-central France compared to sweet sorghum, in: Chartier P., Beenackers A., Grassi G. (Eds.), Biomass for energy, environment, agriculture and industry, Elsevier, Oxford, UK, pp. 556–564. [Google Scholar]
  • Thorne G.N. (1962) Survival of tillers and distribution of dry matter between ear and shoot of barley varieties, Ann. Bot. 26, 37–54. [Google Scholar]
  • Vargas L.A., Andersen M.N., Jensen C.R., Jorgensen U. (2002) Estimation of leaf area index, light interception and biomass accumulation of Miscanthus sinensis ’Goliath’ from radiation measurements, Biomass Bioenerg. 22, 1–14. [CrossRef] [Google Scholar]
  • Vonwuhlisch G., Deuter M., Muhs H.J. (1994) Identification of Miscanthus Varieties by Their Isozymes, J. Agron. Crop Sci. 172, 247–254. [CrossRef] [Google Scholar]
  • Walsh M. (1998) Miscanthus handbook. Miscanthus productivity Network AIR-CT92-0294, Hyperion Energy Systems Ltd, Cork, Ireland, p. 225. [Google Scholar]
  • Wang D., Naidu S., Portis A.R., Moose S.P., Long S.P. (2008a) Can the cold tolerance of C4 photosynthesis in Miscanthus × giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco, J. Exp. Bot. 59, 1779–1787. [CrossRef] [PubMed] [Google Scholar]
  • Wang D., Portis A.R., Moose S.P., Long S.P. (2008b) Cool C4 Photosynthesis: Pyruvate Pi Dikinase Expression and Activity Corresponds to the Expectional Cold Tolerance of Carbon Assimilation in Miscanthus × giganteus, Plant Physiol. 148, 557–567. [CrossRef] [PubMed] [Google Scholar]
  • Wang M., Wu M., Huo H. (2007) Lice- cycle energy and greenhouse gas emission impacts of differents corn ethanol plant types, Environ. Res. Lett. 2, 1–13. [Google Scholar]
  • Weng J.-H. (1993) Photosynthesis of different ecotypes of Miscanthus spp. as affected by water stress, Photosynthetica 29, 43–48. [Google Scholar]
  • Weng J.H., Hsu F.-H. (2001) Gas Exchange and Epidermal Characteristics of Miscanthus Populations in Taiwan Varying with Habitats and Nitrogen Application, Photosynthetica 39, 35–41. [CrossRef] [Google Scholar]
  • Weng J.H., Ueng R.G. (1997) Effect of temperature on photosynthesis of Miscanthus clones collected from different elevations, Photosynthetica 34, 307–311. [CrossRef] [Google Scholar]
  • Yan W.K., Hunt L.A. (1999). An equation for modelling the temperature response of plant using only the cardinal temperature, Ann. Bot. 84, 607–614. [CrossRef] [Google Scholar]
  • Ye B., Saito A., Minamisawa K. (2005) Effect of inoculation with anaerobic nitrogen-fixing consortium on salt tolerance of Miscanthus sinensis, Soil Sci. Plant Nutr. 51, 243–249. [CrossRef] [Google Scholar]