Issue
Agron. Sustain. Dev.
Volume 29, Number 2, April-June 2009
Page(s) 267 - 275
DOI http://dx.doi.org/10.1051/agro:2008041
Published online 25 September 2008
Agron. Sustain. Dev. 29 (2009) 267-275
DOI: 10.1051/agro:2008041

Sequestration of organic carbon in West African soils by Aménagement en Courbes de Niveau

Mamadou Doumbia1, Ansumana Jarju2, Modou Sène3, Kalifa Traoré1, Russell Yost4, Richard Kablan4, Kevin Brannan5, Abou Berthe1, Charles Yamoah4, Antonio Querido4, Pierre C.S. Traoré6 and Abdou Ballo1

1  Institut d'Économie Rurale, Bamako, Mali, Laboratoire Sol-Eau-Plante, BP 262, Bamako, Mali
2  National Agricultural Research Institute, Private Mail Bag 526, Serrekunda, The Gambia
3  Centre d'Étude Régional pour Amélioration de l'Adaptation à la Sécheresse, BP 3320, Thiès, Senegal
4  University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI, 96822, USA
5  Virginia Polytechnic and State University, Biological Systems Engineering, 307 Seitz Hall, Blacksburg, VA, 24061-0303, USA
6  ICRISAT/Bamako, Laboratoire Sol-Eau-Plante, BP 262, Bamako, Mali

Accepted 19 June 2008 ; published online 25 September 2008

Abstract - A recent Intergovernmental Panel on Climate Change (IPPC) report concludes that global warming, while already a global crisis, is likely to become even more devastating. The scientific consensus is that global warming is caused by increases in greenhouse gases including carbon dioxide. The Sahel of West Africa seems to be more adversely affected by such climate changes, leading to reduced and more sporadic rainfall. In addition, food security in the region is tenuous and fragile, due to adverse climate change, but also due to the historical mining of nutrients and carbon. With the adoption of the Kyoto accords, at least by some countries, sequestered carbon (C) has become a tradable commodity. This provides a double incentive to increase soil organic carbon in the C-depleted and degraded soils of West Africa – return C to improve soil quality and assist in removing CO2 from the atmosphere to assist in mitigating climate change. A challenge, however, remains to determine which agricultural systems can actually sequester C. The technology called Aménagement en courbes de niveau (ACN), which can be roughly translated as `Ridge-tillage', has given crop yield increases of 30 to 50%. To date, there has only been anecdotal evidence suggesting that Aménagement en courbes de niveau leads to increased soil organic C. The objectives of the study reported here were to determine whether the technology has the potential to sequester C in West African soils, and, if so, how much. In this study, soil organic C was measured by combustion methods in soils sampled at 0–20 and 20–40 cm depths in a series of experiments in Mali, Senegal and The Gambia. Soil organic C was measured in three very different types of experiments, all including Aménagement en courbes de niveau technology, resulting in three methods of measuring C sequestration. Our results indicate that the Aménagement en courbes de niveau technology significantly increased maize yields by 24% by weight in the Gambia experiment while soil organic C was increased by 26% in The Gambia, by 12% in Siguidolo, Mali, and by 14% in peanut systems of Nioro, Senegal. These increases in soil organic C are likely due to three factors: (1) reduced erosion and movement of soil, (2) increased crop growth resulting from the greater capture of rainfall, and (3) increased growth and density of shrubs and trees resulting from the increased subsoil water, resulting in turn from the increased capture of rainfall, and reduced runoff. Measuring soil C on fields that were successively placed under Aménagement en courbes de niveau management and the use of replicated experimental plots appear to be the best methods to quantify the C sequestration potential of the practice. These results indicate that this soil and water conservation technology not only harvests water and increases food production, but also increases soil organic carbon. This technology thus is a successful technique to sequester C in soils and if carried out in a large region may both offset CO2 emissions and help mitigate climate change.


Key words: ACN / Aménagement en courbes de niveau / ridge-tillage / Mali / Senegal / The Gambia / soil organic carbon / reductions in carbon dioxide / carbon sequestration / climate change

Corresponding author: rsyost@hawaii.edu

© INRA, EDP Sciences 2008