Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Sugarcane health monitoring with satellite spectroscopy and machine learning: A review

Ethan Kane Waters, Carla Chia-Ming Chen and Mostafa Rahimi Azghadi
Computers and Electronics in Agriculture 229 109686 (2025)
https://doi.org/10.1016/j.compag.2024.109686

Crop classification and cropping intensity estimation using geospatial technology in the upper Gangetic plains of Uttarakhand

Arjun Shreepad Hegde, Rajeev Ranjan and Samarth Shreepad Hegde
Heliyon 10 (22) e36364 (2024)
https://doi.org/10.1016/j.heliyon.2024.e36364

Sugarcane Crop Type Discrimination and Area Mapping at Field Scale Using Sentinel Images and Machine Learning Methods

Ashmitha Nihar, N. R. Patel, Shweta Pokhariyal and Abhishek Danodia
Journal of the Indian Society of Remote Sensing 50 (2) 217 (2022)
https://doi.org/10.1007/s12524-021-01444-0

Deep Learning-Based Method for Classification of Sugarcane Varieties

Priscila Marques Kai, Bruna Mendes de Oliveira and Ronaldo Martins da Costa
Agronomy 12 (11) 2722 (2022)
https://doi.org/10.3390/agronomy12112722

Remote Sensing Applications in Sugarcane Cultivation: A Review

Jaturong Som-ard, Clement Atzberger, Emma Izquierdo-Verdiguier, Francesco Vuolo and Markus Immitzer
Remote Sensing 13 (20) 4040 (2021)
https://doi.org/10.3390/rs13204040

Progress in Advanced Computing and Intelligent Engineering

Shyamal Virnodkar, V. K. Pachghare, V. C. Patil and Sunil Kumar Jha
Advances in Intelligent Systems and Computing, Progress in Advanced Computing and Intelligent Engineering 1199 163 (2021)
https://doi.org/10.1007/978-981-15-6353-9_15

Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

Ana Cláudia dos Santos Luciano, Michelle Cristina Araújo Picoli, Daniel Garbellini Duft, Jansle Vieira Rocha, Manoel Regis Lima Verde Leal and Guerric le Maire
Computers and Electronics in Agriculture 184 106063 (2021)
https://doi.org/10.1016/j.compag.2021.106063

Snow and glacial feature identification using Hyperion dataset and machine learning algorithms

Mohd Anul Haq, Mohammed Alshehri, Gazi Rahaman, Abhijit Ghosh, Prashant Baral and Chander Shekhar
Arabian Journal of Geosciences 14 (15) (2021)
https://doi.org/10.1007/s12517-021-07434-3

A Time Series Mining Approach for Agricultural Area Detection

Joao Paulo Da Silva, Jurandir Zullo and Luciana Alvim Santos Romani
IEEE Transactions on Big Data 6 (3) 537 (2020)
https://doi.org/10.1109/TBDATA.2019.2913402

Discriminating trees species from the relationship between spectral reflectance and chlorophyll contents of mangrove forest in Malaysia

A.W. Zulfa, K. Norizah, O. Hamdan, et al.
Ecological Indicators 111 106024 (2020)
https://doi.org/10.1016/j.ecolind.2019.106024

Investigating the identification of atypical sugarcane using NIR analysis of online mill data

Justin Sexton, Yvette Everingham, David Donald, Steve Staunton and Ronald White
Computers and Electronics in Agriculture 168 105111 (2020)
https://doi.org/10.1016/j.compag.2019.105111

ICT Analysis and Applications

Shyamal S. Virnodkar, Vinod K. Pachghare, V. C. Patil and Sunil Kumar Jha
Lecture Notes in Networks and Systems, ICT Analysis and Applications 93 539 (2020)
https://doi.org/10.1007/978-981-15-0630-7_55

Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes

Guilherme M. Sanches, Paulo S. Graziano Magalhães and Henrique C. Junqueira Franco
Geoderma 334 90 (2019)
https://doi.org/10.1016/j.geoderma.2018.07.051

A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm

Ana Cláudia dos Santos Luciano, Michelle Cristina Araújo Picoli, Jansle Vieira Rocha, Daniel Garbellini Duft, Rubens Augusto Camargo Lamparelli, Manoel Regis Lima Verde Leal and Guerric Le Maire
International Journal of Applied Earth Observation and Geoinformation 80 127 (2019)
https://doi.org/10.1016/j.jag.2019.04.013

Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods

A. J. Steidle Neto, D. C. Lopes, J. V. Toledo, S. Zolnier and T. G. F. Silva
The Journal of Agricultural Science 1 (2018)
https://doi.org/10.1017/S0021859618000539

Spectral separability and mapping potential of cassava leaf damage symptoms caused by whiteflies (Bemisia tabaci)

Neil C Sims, Paul De Barro, Glenn J Newnham, Andrew Kalyebi, Sarina Macfadyen and Tim J Malthus
Pest Management Science 74 (1) 246 (2018)
https://doi.org/10.1002/ps.4718

Remote Sensing and Cropping Practices: A Review

Agnès Bégué, Damien Arvor, Beatriz Bellon, Julie Betbeder, Diego De Abelleyra, Rodrigo P. D. Ferraz, Valentine Lebourgeois, Camille Lelong, Margareth Simões and Santiago R. Verón
Remote Sensing 10 (1) 99 (2018)
https://doi.org/10.3390/rs10010099

Forecasting yield by integrating agrarian factors and machine learning models: A survey

Dhivya Elavarasan, Durai Raj Vincent, Vishal Sharma, Albert Y. Zomaya and Kathiravan Srinivasan
Computers and Electronics in Agriculture 155 257 (2018)
https://doi.org/10.1016/j.compag.2018.10.024

Pixel-based crop classification in Peru from Landsat 7 ETM+ images using a Random Forest model

Kenichi TATSUMI, Yosuke YAMASHIKI, Anggie Karolin Morales MORANTE, Lia Ramos FERNÁNDEZ and Ricardo Apaclla NALVARTE
Journal of Agricultural Meteorology 72 (1) 1 (2016)
https://doi.org/10.2480/agrmet.D-15-00010

Accurate prediction of sugarcane yield using a random forest algorithm

Yvette Everingham, Justin Sexton, Danielle Skocaj and Geoff Inman-Bamber
Agronomy for Sustainable Development 36 (2) (2016)
https://doi.org/10.1007/s13593-016-0364-z

Identifying Sugarcane Plantation using LANDSAT-8 Images with Support Vector Machines

Sidik Mulyono and Nadirah
IOP Conference Series: Earth and Environmental Science 47 012008 (2016)
https://doi.org/10.1088/1755-1315/47/1/012008

Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers

Elfatih M. Abdel-Rahman, Onisimo Mutanga, Elhadi Adam and Riyad Ismail
ISPRS Journal of Photogrammetry and Remote Sensing 88 48 (2014)
https://doi.org/10.1016/j.isprsjprs.2013.11.013

Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers

Elhadi Adam, Onisimo Mutanga, John Odindi and Elfatih M. Abdel-Rahman
International Journal of Remote Sensing 35 (10) 3440 (2014)
https://doi.org/10.1080/01431161.2014.903435

Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data

Elfatih M. Abdel-Rahman, Fethi B. Ahmed and Riyad Ismail
International Journal of Remote Sensing 34 (2) 712 (2013)
https://doi.org/10.1080/01431161.2012.713142

Classification of soybean varieties using different techniques: case study with Hyperion and sensor spectral resolution simulations

Fábio M. Breunig, Le^nio S. Galvão, Anto^nio R. Formaggio and José C. N. Epiphanio
Journal of Applied Remote Sensing 5 (1) 053533 (2011)
https://doi.org/10.1117/1.3604787

Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Daniel Zamykal and Yvette L. Everingham
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms 189 (2009)
https://doi.org/10.1007/978-90-481-2716-0_9

Discriminating cropping systems and agro-environmental measures by remote sensing

José Manuel Peña-Barragán, Francisca López-Granados, Luis García-Torres, et al.
Agronomy for Sustainable Development 28 (2) 355 (2008)
https://doi.org/10.1051/agro:2007049