Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

This article has been cited by the following article(s):

Remote Sensing Applications in Sugarcane Cultivation: A Review

Jaturong Som-ard, Clement Atzberger, Emma Izquierdo-Verdiguier, Francesco Vuolo and Markus Immitzer
Remote Sensing 13 (20) 4040 (2021)
DOI: 10.3390/rs13204040
See this article

Detecting Sirex noctilio grey-attacked and lightning-struck pine trees using airborne hyperspectral data, random forest and support vector machines classifiers

Elfatih M. Abdel-Rahman, Onisimo Mutanga, Elhadi Adam and Riyad Ismail
ISPRS Journal of Photogrammetry and Remote Sensing 88 48 (2014)
DOI: 10.1016/j.isprsjprs.2013.11.013
See this article

Spectral separability and mapping potential of cassava leaf damage symptoms caused by whiteflies (Bemisia tabaci )

Neil C Sims, Paul De Barro, Glenn J Newnham, et al.
Pest Management Science 74 (1) 246 (2018)
DOI: 10.1002/ps.4718
See this article

Classification of soybean varieties using different techniques: case study with Hyperion and sensor spectral resolution simulations

Fábio M. Breunig, Le^nio S. Galvão, Anto^nio R. Formaggio and José C. N. Epiphanio
Journal of Applied Remote Sensing 5 (1) 053533 (2011)
DOI: 10.1117/1.3604787
See this article

Accurate prediction of sugarcane yield using a random forest algorithm

Yvette Everingham, Justin Sexton, Danielle Skocaj and Geoff Inman-Bamber
Agronomy for Sustainable Development 36 (2) (2016)
DOI: 10.1007/s13593-016-0364-z
See this article

Discriminating cropping systems and agro-environmental measures by remote sensing

José Manuel Peña-Barragán, Francisca López-Granados, Luis García-Torres, et al.
Agronomy for Sustainable Development 28 (2) 355 (2008)
DOI: 10.1051/agro:2007049
See this article

Pixel-based crop classification in Peru from Landsat 7 ETM+ images using a Random Forest model

Kenichi TATSUMI, Yosuke YAMASHIKI, Anggie Karolin Morales MORANTE, Lia Ramos FERNÁNDEZ and Ricardo Apaclla NALVARTE
Journal of Agricultural Meteorology 72 (1) 1 (2016)
DOI: 10.2480/agrmet.D-15-00010
See this article

Remote Sensing and Cropping Practices: A Review

Agnès Bégué, Damien Arvor, Beatriz Bellon, et al.
Remote Sensing 10 (2) 99 (2018)
DOI: 10.3390/rs10010099
See this article

Application of GPS and GIS in Sugarcane Agriculture

C. Palaniswami, P. Gopalasundaram and A. Bhaskaran
Sugar Tech 13 (4) 360 (2011)
DOI: 10.1007/s12355-011-0098-9
See this article

A Time Series Mining Approach for Agricultural Area Detection

Joao Paulo Da Silva, Jurandir Zullo and Luciana Alvim Santos Romani
IEEE Transactions on Big Data 6 (3) 537 (2020)
DOI: 10.1109/TBDATA.2019.2913402
See this article

Identifying Sugarcane Plantation using LANDSAT-8 Images with Support Vector Machines

Sidik Mulyono and Nadirah
IOP Conference Series: Earth and Environmental Science 47 012008 (2016)
DOI: 10.1088/1755-1315/47/1/012008
See this article

Classification of sugarcane varieties using visible/near infrared spectral reflectance of stalks and multivariate methods

A. J. Steidle Neto, D. C. Lopes, J. V. Toledo, S. Zolnier and T. G. F. Silva
The Journal of Agricultural Science 1 (2018)
DOI: 10.1017/S0021859618000539
See this article

Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes

Guilherme M. Sanches, Paulo S. Graziano Magalhães and Henrique C. Junqueira Franco
Geoderma 334 90 (2019)
DOI: 10.1016/j.geoderma.2018.07.051
See this article

Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers

Elhadi Adam, Onisimo Mutanga, John Odindi and Elfatih M. Abdel-Rahman
International Journal of Remote Sensing 35 (10) 3440 (2014)
DOI: 10.1080/01431161.2014.903435
See this article

Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data

Elfatih M. Abdel-Rahman, Fethi B. Ahmed and Riyad Ismail
International Journal of Remote Sensing 34 (2) 712 (2013)
DOI: 10.1080/01431161.2012.713142
See this article

Forecasting yield by integrating agrarian factors and machine learning models: A survey

Dhivya Elavarasan, Durai Raj Vincent, Vishal Sharma, Albert Y. Zomaya and Kathiravan Srinivasan
Computers and Electronics in Agriculture 155 257 (2018)
DOI: 10.1016/j.compag.2018.10.024
See this article

Progress in Advanced Computing and Intelligent Engineering

Shyamal Virnodkar, V. K. Pachghare, V. C. Patil and Sunil Kumar Jha
Advances in Intelligent Systems and Computing, Progress in Advanced Computing and Intelligent Engineering 1199 163 (2021)
DOI: 10.1007/978-981-15-6353-9_15
See this article

Climate Change, Intercropping, Pest Control and Beneficial Microorganisms

Daniel Zamykal and Yvette L. Everingham
Climate Change, Intercropping, Pest Control and Beneficial Microorganisms 189 (2009)
DOI: 10.1007/978-90-481-2716-0_9
See this article

Discriminating trees species from the relationship between spectral reflectance and chlorophyll contents of mangrove forest in Malaysia

A.W. Zulfa, K. Norizah, O. Hamdan, et al.
Ecological Indicators 111 106024 (2020)
DOI: 10.1016/j.ecolind.2019.106024
See this article

Investigating the identification of atypical sugarcane using NIR analysis of online mill data

Justin Sexton, Yvette Everingham, David Donald, Steve Staunton and Ronald White
Computers and Electronics in Agriculture 168 105111 (2020)
DOI: 10.1016/j.compag.2019.105111
See this article

ICT Analysis and Applications

Shyamal S. Virnodkar, Vinod K. Pachghare, V. C. Patil and Sunil Kumar Jha
Lecture Notes in Networks and Systems, ICT Analysis and Applications 93 539 (2020)
DOI: 10.1007/978-981-15-0630-7_55
See this article

Snow and glacial feature identification using Hyperion dataset and machine learning algorithms

Mohd Anul Haq, Mohammed Alshehri, Gazi Rahaman, Abhijit Ghosh, Prashant Baral and Chander Shekhar
Arabian Journal of Geosciences 14 (15) (2021)
DOI: 10.1007/s12517-021-07434-3
See this article

Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm

Ana Cláudia dos Santos Luciano, Michelle Cristina Araújo Picoli, Daniel Garbellini Duft, et al.
Computers and Electronics in Agriculture 184 106063 (2021)
DOI: 10.1016/j.compag.2021.106063
See this article

R. Sivakumar, B. Prabadevi, G. Velvizhi, S. Muthuraja, S. Kathiravan, M. Biswajita and A. Madhumathi
DOI: 10.5772/intechopen.97679
See this article

Priscila M. Kai, Ronaldo M. da Costa, Bruna M. de Oliveira, Deborah S. A. Fernandes, Juliana Felix and Fabrizzio Soares
1212 (2020)
DOI: 10.1109/COMPSAC48688.2020.00-91
See this article

Sugarcane Crop Type Discrimination and Area Mapping at Field Scale Using Sentinel Images and Machine Learning Methods

Ashmitha Nihar, N. R. Patel, Shweta Pokhariyal and Abhishek Danodia
Journal of the Indian Society of Remote Sensing 50 (2) 217 (2022)
DOI: 10.1007/s12524-021-01444-0
See this article

A generalized space-time OBIA classification scheme to map sugarcane areas at regional scale, using Landsat images time-series and the random forest algorithm

Ana Cláudia dos Santos Luciano, Michelle Cristina Araújo Picoli, Jansle Vieira Rocha, Daniel Garbellini Duft, Rubens Augusto Camargo Lamparelli, Manoel Regis Lima Verde Leal and Guerric Le Maire
International Journal of Applied Earth Observation and Geoinformation 80 127 (2019)
DOI: 10.1016/j.jag.2019.04.013
See this article

Vannia Ruiz, Katherine Hermosilla, Carolina Martínez and Francisco de la Barrera
405 (2022)
DOI: 10.1007/978-3-031-01980-7_31
See this article

Deep Learning-Based Method for Classification of Sugarcane Varieties

Priscila Marques Kai, Bruna Mendes de Oliveira and Ronaldo Martins da Costa
Agronomy 12 (11) 2722 (2022)
DOI: 10.3390/agronomy12112722
See this article