The Citing articles tool gives a list of articles citing the current article. The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program . You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).
Cited article:
T. Boulard , A. Baille , M. Mermier , F. Villette
Agronomie, 11 4 (1991) 259-274
This article has been cited by the following article(s):
46 articles
Decadal Dynamics of Energy Balance and Transpiration Fraction in an Alpine Ecosystem: A Modelling and Observational Study
Yao Wu and Pei Wang Ecohydrology 18 (2) (2025) https://doi.org/10.1002/eco.70029
Night transpiration of peanut affects interspecific water complementarity and use efficiency in maize/peanut intercropping
Tianran Sun, Zhanxiang Sun, Zhe Zhang, Yue Zhang, Yajiaoxue Guo, Jinyu Zhang, Jiayi Nie, Zhi Dong, Zeshan Zhang, Chenjia Zhang, Xu Zhang, Chen Feng and Lizhen Zhang Agricultural Water Management 312 109420 (2025) https://doi.org/10.1016/j.agwat.2025.109420
Cfd-based optimization of Direct evaporative cooling systems for canarian greenhouses in Semi-Arid regions
Fatima Ezzahra Allali, Hicham Fatnassi, Hassan Demrati, Francisco Domingo Molina Aiz, Lahoucine Gourdo, Younes Errami, Ahmed Wifaya and Ahmed Aharoune Energy and Buildings 323 114767 (2024) https://doi.org/10.1016/j.enbuild.2024.114767
CFD based heat transfer parameter identification of greenhouse and greenhouse climate prediction method
Chuang Mao and Yuanping Su Thermal Science and Engineering Progress 49 102462 (2024) https://doi.org/10.1016/j.tsep.2024.102462
Renewable energy supplying strategy for a greenhouse based on the water-energy-economy nexus
Mohammadmehdi Hosseini, Mohammad Hassan Shahverdian, Hoseyn Sayyaadi and Ramtin Javadijam Journal of Cleaner Production 457 142388 (2024) https://doi.org/10.1016/j.jclepro.2024.142388
Use of computational fluid dynamic tools to model the coupling of plant canopy activity and climate in greenhouses and closed plant growth systems: A review
Hicham Fatnassi, Pierre Emmanuel Bournet, Thierry Boulard, Jean Claude Roy, Francisco D. Molina-Aiz and Rashyd Zaaboul Biosystems Engineering 230 388 (2023) https://doi.org/10.1016/j.biosystemseng.2023.04.016
Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD
Rack-woo Kim, Jun-gyu Kim, In-bok Lee, et al. Biosystems Engineering 207 33 (2021) https://doi.org/10.1016/j.biosystemseng.2021.02.017
Climate assessment of greenhouse equipped with south-oriented PV roofs: An experimental and computational fluid dynamics study
Hela Ben Amara, Salwa Bouadila, Hicham Fatnassi, Müslüm Arici and Amen Allah Guizani Sustainable Energy Technologies and Assessments 45 101100 (2021) https://doi.org/10.1016/j.seta.2021.101100
Hydroponics: current and future state of the art in farming
Saad Khan, Ankit Purohit and Nikita Vadsaria Journal of Plant Nutrition 44 (10) 1515 (2021) https://doi.org/10.1080/01904167.2020.1860217
Energy balance and climate control assessments in greenhouse projects using Hortinergy, a friendly scientifically based web tool
V. Stauffer, T. Leseur, A. Grisey, et al. Acta Horticulturae (1296) 41 (2020) https://doi.org/10.17660/ActaHortic.2020.1296.6
Computational fluid dynamic time evolution of crop transpiration and heat transfer inside a Venlo greenhouse
R. Errais, A. Senhaji, M. Mouqallid, et al. Acta Horticulturae (1296) 167 (2020) https://doi.org/10.17660/ActaHortic.2020.1296.22
Improved application of the Penman–Monteith model using an enhanced Jarvis model that considers the effects of nitrogen fertilization on canopy resistance
Huiping Zhou, Shaozhong Kang, Ling Tong, et al. Environmental and Experimental Botany 159 1 (2019) https://doi.org/10.1016/j.envexpbot.2018.12.007
Comparison of Shuttleworth-Wallace model and dual crop coefficient method for estimating evapotranspiration of tomato cultivated in a solar greenhouse
Xuewen Gong, Hao Liu, Jingsheng Sun, Yang Gao and Hao Zhang Agricultural Water Management 217 141 (2019) https://doi.org/10.1016/j.agwat.2019.02.012
A quasi-steady state model for predicting the heating requirements of conventional greenhouses in cold regions
Md Shamim Ahamed, Huiqing Guo and Karen Tanino Information Processing in Agriculture 5 (1) 33 (2018) https://doi.org/10.1016/j.inpa.2017.12.003
Numerical and experimental study of heat and mass transfers in an Almería-type greenhouse
F.D. Molina-Aiz, D.L. Valera and A. López Acta Horticulturae (1170) 209 (2017) https://doi.org/10.17660/ActaHortic.2017.1170.24
Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics
Thierry Boulard, Jean-Claude Roy, Jean-Baptiste Pouillard, Hicham Fatnassi and Ariane Grisey Biosystems Engineering 158 110 (2017) https://doi.org/10.1016/j.biosystemseng.2017.04.001
Ability of multiplicative models to simulate stomatal resistance along plant growth: application to New Guinea impatiens grown in a greenhouse
M. Sourgnes, C. Migeon, H. Bouhoun Ali, et al. Acta Horticulturae (1170) 409 (2017) https://doi.org/10.17660/ActaHortic.2017.1170.50
Stomatal resistance of New Guinea Impatiens pot plants. Part 1: Model development for well watered plants based on design of experiments
Hacene Bouhoun Ali, Pierre-Emmanuel Bournet, Patrice Cannavo, Etienne Chantoiseau and Mathilde Sourgnes Biosystems Engineering 149 112 (2016) https://doi.org/10.1016/j.biosystemseng.2016.05.004
Canary Greenhouse CFD Nocturnal Climate Simulation
Hassan Majdoubi, Thierry Boulard, Hicham Fatnassi, et al. Open Journal of Fluid Dynamics 06 (02) 88 (2016) https://doi.org/10.4236/ojfd.2016.62008
Improvement of the greenhouse climate using a solar air heater with latent storage energy
Salwa Bouadila, Sami Kooli, Safa Skouri, Mariem Lazaar and Abdelhamid Farhat Energy 64 663 (2014) https://doi.org/10.1016/j.energy.2013.10.066
Development, validation and use of a dynamic model for simulate the climate conditions in a large scale greenhouse equipped with insect-proof nets
H. Fatnassi, T. Boulard and L. Bouirden Computers and Electronics in Agriculture 98 54 (2013) https://doi.org/10.1016/j.compag.2013.07.008
Is the Penman–Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop
B. Morille, C. Migeon and P.E. Bournet Scientia Horticulturae 152 80 (2013) https://doi.org/10.1016/j.scienta.2013.01.010
Dynamic simulation of the distributed radiative and convective climate within a cropped greenhouse
R. Nebbali, J.C. Roy and T. Boulard Renewable Energy 43 111 (2012) https://doi.org/10.1016/j.renene.2011.12.003
Relationships of photosynthetic photon flux density, air temperature and humidity with tomato leaf diffusive conductance and temperature
Evandro Zanini Righi, Galileo Adeli Buriol, Luiz Roberto Angelocci, Arno Bernardo Heldwein and Ivonete Fátima Tazzo Brazilian Archives of Biology and Technology 55 (3) 359 (2012) https://doi.org/10.1590/S1516-89132012000300005
Improve Water and Nutrient Efficiency in Tomato Crop by a Dynamic Fertigation Management under Saline Conditions
S. Jiménez, B. M. Plaza, M. L. Segura and M. T. Lao Communications in Soil Science and Plant Analysis 43 (1-2) 258 (2012) https://doi.org/10.1080/00103624.2011.638526
Automated leaf temperature monitoring of glasshouse tomato plants by using a leaf energy balance model
Kristof Vermeulen, Jean-Marie Aerts, Jan Dekock, et al. Computers and Electronics in Agriculture 87 19 (2012) https://doi.org/10.1016/j.compag.2012.05.003
Thermal performance of a greenhouse with a phase change material north wall
F. Berroug, E.K. Lakhal, M. El Omari, M. Faraji and H. El Qarnia Energy and Buildings 43 (11) 3027 (2011) https://doi.org/10.1016/j.enbuild.2011.07.020
Numerical study of greenhouse nocturnal heat losses
F. Berroug, E. K. Lakhal, M. El Omari, M. Faraji and H. El Qarnia Journal of Thermal Science 20 (4) 377 (2011) https://doi.org/10.1007/s11630-011-0484-3
Modeling and evaluation of greenhouse for floriculture in subtropics
K.S. Kumar, Madan K. Jha, K.N. Tiwari and Amanpreet Singh Energy and Buildings 42 (7) 1075 (2010) https://doi.org/10.1016/j.enbuild.2010.01.021
Computer fluid dynamics prediction of climate and fungal spore transfer in a rose greenhouse
T. Boulard, J.C. Roy, H. Fatnassi, A. Kichah and I-B. Lee Computers and Electronics in Agriculture 74 (2) 280 (2010) https://doi.org/10.1016/j.compag.2010.09.003
Evapotranspiração e coeficiente de cultivo do tomate caqui cultivado em ambiente protegido
Ligia S. Reis, José L. de Souza and Carlos A. V. de Azevedo Revista Brasileira de Engenharia Agrícola e Ambiental 13 (3) 289 (2009) https://doi.org/10.1590/S1415-43662009000300010
Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study
H. Majdoubi, T. Boulard, H. Fatnassi and L. Bouirden Agricultural and Forest Meteorology 149 (6-7) 1050 (2009) https://doi.org/10.1016/j.agrformet.2009.01.002
CFD based determination of temperature and humidity at leaf surface
J.C. Roy, C. Vidal, J. Fargues and T. Boulard Computers and Electronics in Agriculture 61 (2) 201 (2008) https://doi.org/10.1016/j.compag.2007.11.007
Microclimate and transpiration of a greenhouse banana crop
H. Demrati, T. Boulard, H. Fatnassi, et al. Biosystems Engineering 98 (1) 66 (2007) https://doi.org/10.1016/j.biosystemseng.2007.03.016
Optimisation of Greenhouse Insect Screening with Computational Fluid Dynamics
H. Fatnassi, T. Boulard, C. Poncet and M. Chave Biosystems Engineering 93 (3) 301 (2006) https://doi.org/10.1016/j.biosystemseng.2005.11.014
Simple Indirect Estimation of Ventilation and Crop Transpiration Rates in a Greenhouse
H. Fatnassi, T. Boulard and J. Lagier Biosystems Engineering 88 (4) 467 (2004) https://doi.org/10.1016/j.biosystemseng.2004.05.003
Effect of Vent Arrangement on Windward Ventilation of a Tunnel Greenhouse
T. Bartzanas, T. Boulard and C. Kittas Biosystems Engineering 88 (4) 479 (2004) https://doi.org/10.1016/j.biosystemseng.2003.10.006
Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer
T. Boulard, H. Fatnassi, J.C. Roy, et al. Agricultural and Forest Meteorology 125 (3-4) 225 (2004) https://doi.org/10.1016/j.agrformet.2004.04.005
Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens
Hicham Fatnassi, Thierry Boulard and Lahcen Bouirden Agricultural and Forest Meteorology 118 (1-2) 97 (2003) https://doi.org/10.1016/S0168-1923(03)00071-6
Fruit and Vegetable Processing
C. Gary and M. Tchamitchian Fruit and Vegetable Processing 69 (2002) https://doi.org/10.1533/9781855736641.2.69
PA—Precision Agriculture
J.C. Roy, T. Boulard, C. Kittas and S. Wang Biosystems Engineering 83 (1) 1 (2002) https://doi.org/10.1006/bioe.2002.0107
Tomato leaf boundary layer climate: implications for microbiological whitefly control in greenhouses
Thierry Boulard, Marie Mermier, Jacques Fargues, et al. Agricultural and Forest Meteorology 110 (3) 159 (2002) https://doi.org/10.1016/S0168-1923(01)00292-1
Food Process Modelling
C. Gary and M. Tchamitchian Food Process Modelling 201 (2001) https://doi.org/10.1533/9781855736375.3.201
Greenhouse crop transpiration simulation from external climate conditions
T. Boulard and S. Wang Agricultural and Forest Meteorology 100 (1) 25 (2000) https://doi.org/10.1016/S0168-1923(99)00082-9
Predicting the Microclimate in a Naturally Ventilated Plastic House in a Mediterranean Climate
S. Wang and T. Boulard Journal of Agricultural Engineering Research 75 (1) 27 (2000) https://doi.org/10.1006/jaer.1999.0482
Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds
A. Mistriotis, C. Arcidiacono, P. Picuno, G.P.A. Bot and G. Scarascia-Mugnozza Agricultural and Forest Meteorology 88 (1-4) 121 (1997) https://doi.org/10.1016/S0168-1923(97)00045-2