Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Deep learning and computer vision in plant disease detection: a comprehensive review of techniques, models, and trends in precision agriculture

Abhishek Upadhyay, Narendra Singh Chandel, Krishna Pratap Singh, Subir Kumar Chakraborty, Balaji M. Nandede, Mohit Kumar, A. Subeesh, Konga Upendar, Ali Salem and Ahmed Elbeltagi
Artificial Intelligence Review 58 (3) (2025)
https://doi.org/10.1007/s10462-024-11100-x

Detection of Aging Maize Seed Vigor and Calculation of Germ Growth Speed Using an Improved YOLOv8-Seg Network

Helong Yu, Xi Ling, Zhenyang Chen, Chunguang Bi and Wanwu Zhang
Agriculture 15 (3) 325 (2025)
https://doi.org/10.3390/agriculture15030325

Deep learning-based arecanut detection for X-ray radiography: improving performance and efficiency for automated classification and quality control

Praveen M Naik and Bhawana Rudra
Nondestructive Testing and Evaluation 40 (2) 671 (2025)
https://doi.org/10.1080/10589759.2024.2327000

Image analysis as cotton seed chemical delinting evaluation tool

Douglas Pelegrini Vaz-Tostes, Heloísa Oliveira dos Santos, Marília Mendes dos Santos Guaraldo, Antônio Carlos Fraga and Wilson Vicente Souza Pereira
Multimedia Tools and Applications (2024)
https://doi.org/10.1007/s11042-024-20397-3

Analysis of Seed Vigor Using the Biospeckle Laser Technique

Roberto A. Braga, José Luís Contado, Karina Renostro Ducatti and Edvaldo A. Amaral da Silva
AgriEngineering 7 (1) 3 (2024)
https://doi.org/10.3390/agriengineering7010003

Classification of Arecanut X-Ray Images for Quality Assessment Using Adaptive Genetic Algorithm and Deep Learning

Praveen M. Naik and Bhawana Rudra
IEEE Access 11 127619 (2023)
https://doi.org/10.1109/ACCESS.2023.3332215

Using Time-to-Event Model in Seed Germination Test to Evaluate Maturity during Cow Dung Composting

Yuan Luo, Xiangzhuo Meng, Yuan Liu, Kokyo Oh and Hongyan Cheng
Sustainability 15 (5) 4201 (2023)
https://doi.org/10.3390/su15054201

Morley: Image Analysis and Evaluation of Statistically Significant Differences in Geometric Sizes of Crop Seedlings in Response to Biotic Stimulation

Daria D. Emekeeva, Tomiris T. Kusainova, Lev I. Levitsky, Elizaveta M. Kazakova, Mark V. Ivanov, Irina P. Olkhovskaya, Mikhail L. Kuskov, Alexey N. Zhigach, Nataliya N. Glushchenko, Olga A. Bogoslovskaya and Irina A. Tarasova
Agronomy 13 (8) 2134 (2023)
https://doi.org/10.3390/agronomy13082134

Capturing crop adaptation to abiotic stress using image-based technologies

Nadia Al-Tamimi, Patrick Langan, Villő Bernád, Jason Walsh, Eleni Mangina and Sónia Negrão
Open Biology 12 (6) (2022)
https://doi.org/10.1098/rsob.210353

Nondestructive high-throughput sugar beet fruit analysis using X-ray CT and deep learning

Tim Van De Looverbosch, Bert Vandenbussche, Pieter Verboven and Bart Nicolaï
Computers and Electronics in Agriculture 200 107228 (2022)
https://doi.org/10.1016/j.compag.2022.107228

Laser biospeckle technique for characterizing the impact of temperature and initial moisture content on seed germination

Puneet Singh Thakur, Amit Chatterjee, Laxman Singh Rajput, Santosh Rana, Vimal Bhatia and Shashi Prakash
Optics and Lasers in Engineering 153 106999 (2022)
https://doi.org/10.1016/j.optlaseng.2022.106999

Classification of viable/non-viable seeds of specialty maize genotypes using spectral and image data plus morphological features

Fatih Yaman and Fatih Kahrıman
Journal of Crop Improvement 36 (2) 285 (2022)
https://doi.org/10.1080/15427528.2021.1960942

Detection of oil rape seed losses before harvest by Image analysis within Fog computing

Dušan Marković, Ranko Koprivica, Biljana Veljković, Marija Gavrilović, Dejan Vujičić, Uroš Pešović and Siniša Ranđić
Poljoprivredna tehnika 47 (4) 28 (2022)
https://doi.org/10.5937/PoljTeh2204028M

The Role of Digital Information Technology for Social Welfare Computing in the Context of the Internet of Things

Yuqing Lu and Nagarajan Deivanayagampillai
Mathematical Problems in Engineering 2022 1 (2022)
https://doi.org/10.1155/2022/1832343

HyperSeed: An End-to-End Method to Process Hyperspectral Images of Seeds

Tian Gao, Anil Kumar Nalini Chandran, Puneet Paul, Harkamal Walia and Hongfeng Yu
Sensors 21 (24) 8184 (2021)
https://doi.org/10.3390/s21248184

Assessing the vigor of cowpea seeds using the Vigor-S software

Carlos Henrique Queiroz Rego, Silvio Moure Cicero, Fabiano França-Silva and Francisco Guilhien Gomes-Junior
Journal of Seed Science 43 (2021)
https://doi.org/10.1590/2317-1545v43244858

Identification of sorghum genotypes using a machine vision system

Leyla Nazari, Mohammad Shaker, Abdolhamid Karimi and Ewa Ropelewska
Journal of Food Process Engineering 44 (5) (2021)
https://doi.org/10.1111/jfpe.13673

Evaluation of germination rate of tomato seeds with autonomous image processing and artificial neural networks system

D. Stajnko, Č. Rozman and U. Škrubej
Acta Horticulturae (1326) 303 (2021)
https://doi.org/10.17660/ActaHortic.2021.1326.40

Characterization of soybeans and calibration of their DEM input parameters

Thiet Xuan Nguyen, Lu Minh Le, Thong Chung Nguyen, et al.
Particulate Science and Technology 39 (5) 530 (2021)
https://doi.org/10.1080/02726351.2020.1775739

Cultivar discrimination of stored apple seeds based on geometric features determined using image analysis

Ewa Ropelewska and Krzysztof P. Rutkowski
Journal of Stored Products Research 92 101804 (2021)
https://doi.org/10.1016/j.jspr.2021.101804

Robust seed germination prediction using deep learning and RGB image data

Yuval Nehoshtan, Elad Carmon, Omer Yaniv, Sharon Ayal and Or Rotem
Scientific Reports 11 (1) (2021)
https://doi.org/10.1038/s41598-021-01712-6

Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges

Amruta Shelar, Ajay Vikram Singh, Romi Singh Maharjan, Peter Laux, Andreas Luch, Donato Gemmati, Veronica Tisato, Shubham Pratap Singh, Maria Fernanda Santilli, Akanksha Shelar, Manohar Chaskar and Rajendra Patil
Cells 10 (9) 2428 (2021)
https://doi.org/10.3390/cells10092428

Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops

Nikita Genze, Richa Bharti, Michael Grieb, Sebastian J. Schultheiss and Dominik G. Grimm
Plant Methods 16 (1) (2020)
https://doi.org/10.1186/s13007-020-00699-x

A Monitoring System for the Segmentation and Grading of Broccoli Head Based on Deep Learning and Neural Networks

Chengquan Zhou, Jun Hu, Zhifu Xu, et al.
Frontiers in Plant Science 11 (2020)
https://doi.org/10.3389/fpls.2020.00402

Application of image analysis for determination of rapeseed dimensions using IoT concept

Dušan Marković, Ranko Koprivica, Biljana Veljković, et al.
Poljoprivredna tehnika 45 (3) 44 (2020)
https://doi.org/10.5937/PoljTeh2003044M

Recent Applications of Multispectral Imaging in Seed Phenotyping and Quality Monitoring—An Overview

Gamal ElMasry, Nasser Mandour, Salim Al-Rejaie, Etienne Belin and David Rousseau
Sensors 19 (5) 1090 (2019)
https://doi.org/10.3390/s19051090

Vigor-S, a new system for evaluating the physiological potential of maize seeds

Danielle Otte Carrara Castan, Francisco Guilhien Gomes-Junior and Julio Marcos-Filho
Scientia Agricola 75 (2) 167 (2018)
https://doi.org/10.1590/1678-992x-2016-0401

Using k-NN to analyse images of diverse germination phenotypes and detect single seed germination in Miscanthus sinensis

Danny Awty-Carroll, John Clifton-Brown and Paul Robson
Plant Methods 14 (1) (2018)
https://doi.org/10.1186/s13007-018-0272-0

Combined modification of clay with sulfhydryl and iron: Toxicity alleviation in Cr-contaminated soils for mustard (Brassica juncea) growth

Yingheng Fei, Chengshuai Liu, Fangbai Li, et al.
Journal of Geochemical Exploration 176 2 (2017)
https://doi.org/10.1016/j.gexplo.2016.10.014

Near-infrared hyperspectral imaging for following imbibition of single wheat kernel sections

Eloïse Lancelot, Dominique Bertrand, Mohamed Hanafi and Benoît Jaillais
Vibrational Spectroscopy 92 46 (2017)
https://doi.org/10.1016/j.vibspec.2017.05.001

Seed vigor classification using analysis of mean radicle emergence time and single counts of radicle emergence in rice (Oryza sativa L.) and mung bean (Vigna radiata (L.) Wilczek)

Damrongvudhi Onwimol, Wanchai Chanmprasert, Petchlada Changsee and Thunyapuk Rongsangchaichareon
Agriculture and Natural Resources 50 (5) 345 (2016)
https://doi.org/10.1016/j.anres.2016.12.003

Proteomic and morphometric study of the in vitro interaction between Oncidium sphacelatum Lindl. (Orchidaceae) and Thanatephorus sp. RG26 (Ceratobasidiaceae)

Mariana Yadira López-Chávez, Karina Guillén-Navarro, Vincenzo Bertolini, et al.
Mycorrhiza 26 (5) 353 (2016)
https://doi.org/10.1007/s00572-015-0676-x

Plant-Soil Interactions and Desertification: A Case Study in the Northern Negev, Israel

Amir Mor-Mussery, Stefan Leu, Arie Budovsky and Itamar Lensky
Arid Land Research and Management 29 (1) 85 (2015)
https://doi.org/10.1080/15324982.2014.933455

Assessment of germination rate of the tomato seeds using image processing and machine learning

U. Škrubej, Č Rozman and D. Stajnko
European Journal of Horticultural Science 80 (2) 68 (2015)
https://doi.org/10.17660/eJHS.2015/80.2.4

Association between biometric characteristics of tomato seeds and seedling growth and development

Patricia Peñaloza and José María Durán
Electronic Journal of Biotechnology 18 (4) 267 (2015)
https://doi.org/10.1016/j.ejbt.2015.04.003

Avaliação da morfologia interna de sementes de Acca sellowiana O. Berg por meio de análise de imagens

Vanessa Neumann Silva, Marcelo Benevenga Sarmento, Ana Carolina Silveira, Clarissa Santos Silva and Silvio Moure Cicero
Revista Brasileira de Fruticultura 35 (4) 1158 (2013)
https://doi.org/10.1590/S0100-29452013000400027

Discrimination of Acacia seeds at species and subspecies levels using an image analyzer

V. Sivakumar, R. Anandalakshmi, Rekha R. Warrier, et al.
Forest Science and Practice 15 (4) 253 (2013)
https://doi.org/10.1007/s11632-013-0414-4

Marked, biased, filter (MBF): use of digital X-radiography and mark-recapture to partition seed lots based on sampled individual seed quality attributes

Robert F. Keefe and Anthony S. Davis
New Forests 43 (2) 169 (2012)
https://doi.org/10.1007/s11056-011-9271-y

Use of partial least squares discriminant analysis on visible‐near infrared multispectral image data to examine germination ability and germ length in spinach seeds

Nisha Shetty, Merete Halkjær Olesen, René Gislum, Lise Christina Deleuran and Birte Boelt
Journal of Chemometrics 26 (8-9) 462 (2012)
https://doi.org/10.1002/cem.1415

Unravelling the complex trait of seed quality: using natural variation through a combination of physiology, genetics and -omics technologies

Wilco Ligterink, Ronny V.L. Joosen and Henk W.M. Hilhorst
Seed Science Research 22 (S1) S45 (2012)
https://doi.org/10.1017/S0960258511000328

Frequency signature of water activity by biospeckle laser

Rafael Rodrigues Cardoso, Anderson Gomide Costa, Cassia Marques Batista Nobre and Roberto Alves Braga
Optics Communications 284 (8) 2131 (2011)
https://doi.org/10.1016/j.optcom.2011.01.003

Classification of Viable and Non-Viable Spinach (Spinacia Oleracea L.) Seeds by Single Seed near Infrared Spectroscopy and Extended Canonical Variates Analysis

Merete Halkjaer Olesen, Nisha Shetty, Rene Gislum and Birte Boelt
Journal of Near Infrared Spectroscopy 19 (3) 171 (2011)
https://doi.org/10.1255/jnirs.928

germinator : a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination

Ronny V. L. Joosen, Jan Kodde, Leo A. J. Willems, et al.
The Plant Journal 62 (1) 148 (2010)
https://doi.org/10.1111/j.1365-313X.2009.04116.x

Modeling individual conifer seed shape as a sum of fused partial ellipsoids

Robert F. Keefe and Anthony S. Davis
Canadian Journal of Forest Research 40 (11) 2175 (2010)
https://doi.org/10.1139/X10-165