Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

A new multitrophic model for olive tree, olive fly and fly predators to support risk management in operational contexts

Ermes Movedi, Livia Paleari, Sofia Tartarini, Fosco M. Vesely, Giacomo Facelli, Francisco J. Villalobos and Roberto Confalonieri
Ecological Modelling 501 111015 (2025)
https://doi.org/10.1016/j.ecolmodel.2024.111015

Improving harvester yield maps postprocessing leveraging remote sensing data in rice crop

D. Fita, C. Rubio, B. Franch, S. Castiñeira-Ibáñez, D. Tarrazó-Serrano and A. San Bautista
Precision Agriculture 26 (2) (2025)
https://doi.org/10.1007/s11119-025-10219-3

Innovative modeling on the effects of low-temperature stress on rice yields

Yanying Shi, Haoyu Ma, Tao Li, Erjing Guo, Tianyi Zhang, Xijuan Zhang, Xianli Yang, Lizhi Wang, Shukun Jiang, Yuhan Deng, Kaixin Guan, Mingzhe Li, Zhijuan Liu, Xiaoguang Yang and Scott Boden
Journal of Experimental Botany 76 (4) 1230 (2025)
https://doi.org/10.1093/jxb/erae452

Extending genomic prediction to future climates through crop modelling. A case study on heading time in barley

Livia Paleari, Alessandro Tondelli, Luigi Cattivelli, Ernesto Igartua, Ana M. Casas, Andrea Visioni, Alan H. Schulman, Laura Rossini, Robbie Waugh, Joanne Russell and Roberto Confalonieri
Agricultural and Forest Meteorology 368 110560 (2025)
https://doi.org/10.1016/j.agrformet.2025.110560

A Step Sideways From the Green Revolution in the Light of the European Green Deal

Martina Clerici, Livia Paleari, Ermes Movedi, Alessandro Tondelli and Roberto Confalonieri
Global Change Biology 31 (5) (2025)
https://doi.org/10.1111/gcb.70259

The application of a plant community model to evaluate adaptation strategies for alleviating climate change impacts on grassland productivity, biodiversity and forage quality

Ermes Movedi, Livia Paleari, Giovanni Argenti, Fosco M. Vesely, Nicolina Staglianò, Silvia Parrini and Roberto Confalonieri
Ecological Modelling 488 110596 (2024)
https://doi.org/10.1016/j.ecolmodel.2023.110596

Estimating rice crop (Oryza sativa L.) parameters during the 'Yala' season in Sri Lanka using UAV multispectral indices

P.P. Dharmaratne, A.S.A. Salgadoe, W.M.U.K. Rathnayake and A.D.A.J.K. Weerasinghe
Remote Sensing Applications: Society and Environment 33 101132 (2024)
https://doi.org/10.1016/j.rsase.2023.101132

Improving the estimation of rice above-ground biomass based on spatio-temporal UAV imagery and phenological stages

Yan Dai, Shuang’en Yu, Tao Ma, Jihui Ding, Kaiwen Chen, Guangquan Zeng, Airong Xie, Pingru He, Suhan Peng and Mengxi Zhang
Frontiers in Plant Science 15 (2024)
https://doi.org/10.3389/fpls.2024.1328834

Evaluating the Effects of the CERES-Rice Model to Simulate Upland Rice (Oryza sativa L Yield under Different Plant Density and Nitrogen Management Strategies in Fogera Plain, Northwest Ethiopia

Sisay Tefera, Kindie Tesfaye, Tilahun Tadesse, Teferi Alem and Dereje Ademe
Heliyon e33556 (2024)
https://doi.org/10.1016/j.heliyon.2024.e33556

Assimilation of Earth Observation Data for Crop Yield Estimation in Smallholder Agricultural Systems

Biniam Sisheber, Michael Marshall, Daniel Mengistu and Andrew Nelson
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 17 557 (2024)
https://doi.org/10.1109/JSTARS.2023.3329237

Impacts of climate change on semi-natural alpine pastures productivity and floristic composition

Ermes Movedi, Stefano Bocchi, Livia Paleari, Fosco M. Vesely, Ilda Vagge and Roberto Confalonieri
Regional Environmental Change 23 (4) (2023)
https://doi.org/10.1007/s10113-023-02158-4

Integration of Genomics with Crop Modeling for Predicting Rice Days to Flowering: A Multi-Model Analysis

Yubin Yang, Lloyd T. Wilson, Tao Li, Livia Paleari, Roberto Confalonieri, Yan Zhu, Liang Tang, Xiaolei Qiu, Fulu Tao, Yi Chen, Gerrit Hoogenboom, Kenneth J. Boote, Yujing Gao, Akio Onogi, Hiroshi Nakagawa, Hiroe Yoshida, Shiori Yabe, Michael Dingkuhn, Tanguy Lafarge, Toshihiro Hasegawa and Jing Wang
Field Crops Research 276 108394 (2022)
https://doi.org/10.1016/j.fcr.2021.108394

A new approach for modeling crop-weed interaction targeting management support in operational contexts: A case study on the rice weeds barnyardgrass and red rice

Ermes Movedi, Daniele Valiante, Alessandro Colosio, Luca Corengia, Stefano Cossa and Roberto Confalonieri
Ecological Modelling 463 109797 (2022)
https://doi.org/10.1016/j.ecolmodel.2021.109797

Selection of Candidate Genes Conferring Blast Resistance and Heat Tolerance in Rice through Integration of Meta-QTLs and RNA-Seq

Tian Tian, Lijuan Chen, Yufang Ai and Huaqin He
Genes 13 (2) 224 (2022)
https://doi.org/10.3390/genes13020224

A trait‐based model ensemble approach to design rice plant types for future climate

Livia Paleari, Tao Li, Yubin Yang, Lloyd T. Wilson, Toshihiro Hasegawa, Kenneth J. Boote, Samuel Buis, Gerrit Hoogenboom, Yujing Gao, Ermes Movedi, Françoise Ruget, Upendra Singh, Claudio O. Stöckle, Liang Tang, Daniel Wallach, Yan Zhu and Roberto Confalonieri
Global Change Biology 28 (8) 2689 (2022)
https://doi.org/10.1111/gcb.16087

Model‐based evaluation of climate change impacts on rice grain quality in the main European rice district

Giovanni Alessandro Cappelli and Simone Bregaglio
Food and Energy Security 10 (4) (2021)
https://doi.org/10.1002/fes3.307

Optimizing the spectral sharing in a vertical bifacial agrivoltaics farm

Ramachandran Ammapet Vijayan, Jeevalakshmi Sivanarul and Muthubalan Varadharajaperumal
Journal of Physics D: Applied Physics 54 (30) 304004 (2021)
https://doi.org/10.1088/1361-6463/abfbae

Remote sensing-based estimation of rice yields using various models: A critical review

Daniel Marc G dela Torre, Jay Gao and Cate Macinnis-Ng
Geo-spatial Information Science 24 (4) 580 (2021)
https://doi.org/10.1080/10095020.2021.1936656

Supporting operational site‐specific fertilization in rice cropping systems with infield smartphone measurements and Sentinel-2 observations

Francesco Nutini, Roberto Confalonieri, Livia Paleari, et al.
Precision Agriculture 22 (4) 1284 (2021)
https://doi.org/10.1007/s11119-021-09784-0

Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data

Belen Franch, Alberto San Bautista, David Fita, Constanza Rubio, Daniel Tarrazó-Serrano, Antonio Sánchez, Sergii Skakun, Eric Vermote, Inbal Becker-Reshef and Antonio Uris
Remote Sensing 13 (20) 4095 (2021)
https://doi.org/10.3390/rs13204095

Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars

Qasim Raza, Awais Riaz, Khurram Bashir and Muhammad Sabar
Plant Molecular Biology 104 (1-2) 97 (2020)
https://doi.org/10.1007/s11103-020-01027-6

A remote sensing-based scheme to improve regional crop model calibration at sub-model component level

Jing Zhang, Yi Chen and Zhao Zhang
Agricultural Systems 181 102814 (2020)
https://doi.org/10.1016/j.agsy.2020.102814

Relationships Between Some Agronomical Traits in Genotypes of Rusty Foxglove (Digitalis ferrruginea subsp. ferruginea)

Yusuf ŞAVŞATLI and Mehmet Serhat ODABAŞ
Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi 23 (1) 77 (2020)
https://doi.org/10.18016/ksutarimdoga.vi.588249

Rice yield response forecasting tool (YIELDCAST) for supporting climate change adaptation decision in Sahel

Seydou Traore, Lei Zhang, Aytac Guven and Guy Fipps
Agricultural Water Management 239 106242 (2020)
https://doi.org/10.1016/j.agwat.2020.106242

Fine mapping of the qHTB1-1QTL, which confers heat tolerance at the booting stage, using an Oryza rufipogon Griff. introgression line

Zhibin Cao, Yao Li, Huiwu Tang, et al.
Theoretical and Applied Genetics 133 (4) 1161 (2020)
https://doi.org/10.1007/s00122-020-03539-7

Spring onion seed demand forecasting using a hybrid Holt-Winters and support vector machine model

Yihang Zhu, Yinglei Zhao, Jingjin Zhang, et al.
PLOS ONE 14 (7) e0219889 (2019)
https://doi.org/10.1371/journal.pone.0219889

Novel and Automatic Rice Thickness Extraction Based on Photogrammetry Using Rice Edge Features

Yuchen Kong, Shenghui Fang, Xianting Wu, Yan Gong, Renshan Zhu, Jian Liu and Yi Peng
Sensors 19 (24) 5561 (2019)
https://doi.org/10.3390/s19245561

An evaluation framework to build a cost-efficient crop monitoring system. Experiences from the extension of the European crop monitoring system

Raúl López-Lozano and Bettina Baruth
Agricultural Systems 168 231 (2019)
https://doi.org/10.1016/j.agsy.2018.04.002

Advancing crop modelling capabilities through cultivar-specific parameters sets for the Italian rice germplasm

Gabriele Mongiano, Patrizia Titone, Luigi Tamborini, Roberto Pilu and Simone Bregaglio
Field Crops Research 240 44 (2019)
https://doi.org/10.1016/j.fcr.2019.05.012

A new spatial modeling and interpolation approach for high-resolution temperature maps combining reanalysis data and ground measurements

Mariassunta Viggiano, Lorenzo Busetto, Domenico Cimini, et al.
Agricultural and Forest Meteorology 276-277 107590 (2019)
https://doi.org/10.1016/j.agrformet.2019.05.021

A high-resolution, integrated system for rice yield forecasting at district level

Valentina Pagani, Tommaso Guarneri, Lorenzo Busetto, et al.
Agricultural Systems 168 181 (2019)
https://doi.org/10.1016/j.agsy.2018.05.007

Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data

Carlo Gilardelli, Tommaso Stella, Roberto Confalonieri, et al.
European Journal of Agronomy 103 108 (2019)
https://doi.org/10.1016/j.eja.2018.12.003

From plot to scale: ex-ante assessment of conservation agriculture in Zambia

Adam M. Komarek, Hoyoung Kwon, Beliyou Haile, et al.
Agricultural Systems 173 504 (2019)
https://doi.org/10.1016/j.agsy.2019.04.001

Predicting rice blast disease: machine learning versus process-based models

David F. Nettleton, Dimitrios Katsantonis, Argyris Kalaitzidis, et al.
BMC Bioinformatics 20 (1) (2019)
https://doi.org/10.1186/s12859-019-3065-1

UAV-Based Biomass Estimation for Rice-Combining Spectral, TIN-Based Structural and Meteorological Features

Qi Jiang, Shenghui Fang, Yi Peng, Yan Gong, Renshan Zhu, Xianting Wu, Yi Ma, Bo Duan and Jian Liu
Remote Sensing 11 (7) 890 (2019)
https://doi.org/10.3390/rs11070890

Using boosted tree regression and artificial neural networks to forecast upland rice yield under climate change in Sahel

Lei Zhang, Seydou Traore, Jiankun Ge, et al.
Computers and Electronics in Agriculture 166 105031 (2019)
https://doi.org/10.1016/j.compag.2019.105031

Estimating Rice Agronomic Traits Using Drone-Collected Multispectral Imagery

Dimitris Stavrakoudis, Dimitrios Katsantonis, Kalliopi Kadoglidou, Argyris Kalaitzidis and Ioannis Z. Gitas
Remote Sensing 11 (5) 545 (2019)
https://doi.org/10.3390/rs11050545

Enhancing field scale water productivity for several rice cultivars under limited water supply

Roza Jonubi, Vahid Rezaverdinejad and Hamidreza Salemi
Paddy and Water Environment 16 (1) 125 (2018)
https://doi.org/10.1007/s10333-017-0622-y

Conceptual Architecture and Service-Oriented Implementation of a Regional Geoportal for Rice Monitoring

Carlos Granell, Ignacio Miralles, Luis Rodríguez-Pupo, Alberto González-Pérez, Sven Casteleyn, Lorenzo Busetto, Monica Pepe, Mirco Boschetti and Joaquín Huerta
ISPRS International Journal of Geo-Information 6 (7) 191 (2017)
https://doi.org/10.3390/ijgi6070191

Downstream Services for Rice Crop Monitoring in Europe: From Regional to Local Scale

Lorenzo Busetto, Sven Casteleyn, Carlos Granell, et al.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10 (12) 5423 (2017)
https://doi.org/10.1109/JSTARS.2017.2679159

Identifying trends and associated uncertainties in potential rice production under climate change in Mediterranean areas

Simone Bregaglio, Laure Hossard, Giovanni Cappelli, Remi Resmond, Stefano Bocchi, Jean-Marc Barbier, Françoise Ruget and Sylvestre Delmotte
Agricultural and Forest Meteorology 237-238 219 (2017)
https://doi.org/10.1016/j.agrformet.2017.02.015

A web application to facilitate crop model comparison in ensemble studies

Laure Hossard, Simone Bregaglio, Aurore Philibert, et al.
Environmental Modelling & Software 97 259 (2017)
https://doi.org/10.1016/j.envsoft.2017.08.008

Causes of variation among rice models in yield response to CO2 examined with Free-Air CO2 Enrichment and growth chamber experiments

Toshihiro Hasegawa, Tao Li, Xinyou Yin, Yan Zhu, Kenneth Boote, Jeffrey Baker, Simone Bregaglio, Samuel Buis, Roberto Confalonieri, Job Fugice, Tamon Fumoto, Donald Gaydon, Soora Naresh Kumar, Tanguy Lafarge, Manuel Marcaida III, Yuji Masutomi, Hiroshi Nakagawa, Philippe Oriol, Françoise Ruget, Upendra Singh, Liang Tang, Fulu Tao, Hitomi Wakatsuki, Daniel Wallach, Yulong Wang, et al.
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/s41598-017-13582-y

iTRAQ-based quantitative proteome characterization of wheat grains during filling stages

Yong CUI, Ming-ming YANG, Jian DONG, Wan-chun ZHAO and Xiang GAO
Journal of Integrative Agriculture 16 (10) 2156 (2017)
https://doi.org/10.1016/S2095-3119(16)61583-6

Trait-based model development to support breeding programs. A case study for salt tolerance and rice

Livia Paleari, Ermes Movedi and Roberto Confalonieri
Scientific Reports 7 (1) (2017)
https://doi.org/10.1038/s41598-017-04022-y

Improving cereal yield forecasts in Europe – The impact of weather extremes

Valentina Pagani, Tommaso Guarneri, Davide Fumagalli, et al.
European Journal of Agronomy 89 97 (2017)
https://doi.org/10.1016/j.eja.2017.06.010

Surfing parameter hyperspaces under climate change scenarios to design future rice ideotypes

Livia Paleari, Ermes Movedi, Giovanni Cappelli, Lloyd T. Wilson and Roberto Confalonieri
Global Change Biology 23 (11) 4651 (2017)
https://doi.org/10.1111/gcb.13682

Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index

Manuel Campos-Taberner, Francisco García-Haro, Gustau Camps-Valls, Gonçal Grau-Muedra, Francesco Nutini, Lorenzo Busetto, Dimitrios Katsantonis, Dimitris Stavrakoudis, Chara Minakou, Luca Gatti, Massimo Barbieri, Francesco Holecz, Daniela Stroppiana and Mirco Boschetti
Remote Sensing 9 (3) 248 (2017)
https://doi.org/10.3390/rs9030248

Coupling a generic disease model to the WARM rice simulator to assess leaf and panicle blast impacts in a temperate climate

S. Bregaglio, P. Titone, G. Cappelli, et al.
European Journal of Agronomy 76 107 (2016)
https://doi.org/10.1016/j.eja.2016.02.009

Computer and Computing Technologies in Agriculture IX

Weiqing Wang
IFIP Advances in Information and Communication Technology, Computer and Computing Technologies in Agriculture IX 478 1 (2016)
https://doi.org/10.1007/978-3-319-48357-3_1

ISIde: A rice modelling platform for in silico ideotyping

L. Paleari, S. Bregaglio, G. Cappelli, E. Movedi and R. Confalonieri
Computers and Electronics in Agriculture 128 46 (2016)
https://doi.org/10.1016/j.compag.2016.08.018

Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring

Manuel Campos-Taberner, Francisco Javier García-Haro, Gustau Camps-Valls, et al.
Remote Sensing of Environment 187 102 (2016)
https://doi.org/10.1016/j.rse.2016.10.009

Measurement of Rice Filled Grain Percentage Based on Grain Shadow Features

Tao Liu, Chengxin Ji, Wei Wu, Wen Chen, Bingzhen Yang, Chen Chen, Chengming Sun, Xinkai Zhu and Wenshan Guo
Agronomy Journal 108 (3) 1070 (2016)
https://doi.org/10.2134/agronj2014.0410

Quantifying uncertainty in crop model predictions due to the uncertainty in the observations used for calibration

Roberto Confalonieri, Simone Bregaglio and Marco Acutis
Ecological Modelling 328 72 (2016)
https://doi.org/10.1016/j.ecolmodel.2016.02.013

A taxonomy-based approach to shed light on the babel of mathematical models for rice simulation

Roberto Confalonieri, Simone Bregaglio, Myriam Adam, et al.
Environmental Modelling & Software 85 332 (2016)
https://doi.org/10.1016/j.envsoft.2016.09.007

Analysing the parameter sensitivity of the agro-ecosystem model MONICA for different crops

Xenia Specka, Claas Nendel and Ralf Wieland
European Journal of Agronomy 71 73 (2015)
https://doi.org/10.1016/j.eja.2015.08.004

Reimplementation and reuse of the Canegro model: From sugarcane to giant reed

T. Stella, C. Francone, S.S. Yamaç, et al.
Computers and Electronics in Agriculture 113 193 (2015)
https://doi.org/10.1016/j.compag.2015.02.009

District specific, in silico evaluation of rice ideotypes improved for resistance/tolerance traits to biotic and abiotic stressors under climate change scenarios

L. Paleari, G. Cappelli, S. Bregaglio, et al.
Climatic Change 132 (4) 661 (2015)
https://doi.org/10.1007/s10584-015-1457-4

A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models

Mattia Sanna, Gianni Bellocchi, Mattia Fumagalli and Marco Acutis
Environmental Modelling & Software 73 286 (2015)
https://doi.org/10.1016/j.envsoft.2015.08.017

Evaluation of WARM for different establishment techniques in Jiangsu (China)

Valentina Pagani, Caterina Francone, ZhiMing Wang, et al.
European Journal of Agronomy 59 78 (2014)
https://doi.org/10.1016/j.eja.2014.05.010

Model simplification and development via reuse, sensitivity analysis and composition: A case study in crop modelling

T. Stella, N. Frasso, G. Negrini, et al.
Environmental Modelling & Software 59 44 (2014)
https://doi.org/10.1016/j.envsoft.2014.05.007

A software component implementing a library of models for the simulation of pre-harvest rice grain quality

G. Cappelli, S. Bregaglio, M. Romani, S. Feccia and R. Confalonieri
Computers and Electronics in Agriculture 104 18 (2014)
https://doi.org/10.1016/j.compag.2014.03.002

Impact of Agromanagement Practices on Rice Elongation: Analysis and Modelling

R. Confalonieri, T. Stella, P. Dominoni, N. Frasso, G. Consolati, M. Bertoglio, E. Bianchi, L. Bortone, V. Cairo, G. Cappelli, G. Cozzaglio, G. Fattorossi, A. Garbelli, P. D'Incecco, A. Marazzi, M.E. Marescotti, F. Marziali, S. Maserati, M. Mazza, G. Mottadelli, G. Negrini, F. Nutini, G. Orasen, L. Pacca, M. Pinnetti, et al.
Crop Science 54 (5) 2294 (2014)
https://doi.org/10.2135/cropsci2014.02.0116

Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages

Guo-hua LÜ, Yong-feng WU, Wen-bo BAI, et al.
Journal of Integrative Agriculture 12 (4) 603 (2013)
https://doi.org/10.1016/S2095-3119(13)60278-6

Sensitivity analysis of a hierarchical qualitative model for sustainability assessment of cropping systems

Marta Carpani, Jacques-Eric Bergez and Hervé Monod
Environmental Modelling and Software 27-28 15 (2012)
https://doi.org/10.1016/j.envsoft.2011.10.002

Modelling, predicting and mapping the emergence of aflatoxins in cereals in the EU due to climate change

P. Battilani, V. Rossi, P. Giorni, A. Pietri, A. Gualla, H.J. van der Fels‐Klerx, C.J.H. Booij, A. Moretti, A. Logrieco, F. Miglietta, P. Toscano, M. Miraglia, B. De Santis and C. Brera
EFSA Supporting Publications 9 (1) (2012)
https://doi.org/10.2903/sp.efsa.2012.EN-223

On farm assessment of rice yield variability and productivity gaps between organic and conventional cropping systems under Mediterranean climate

S. Delmotte, P. Tittonell, J.-C. Mouret, R. Hammond and S. Lopez-Ridaura
European Journal of Agronomy 35 (4) 223 (2011)
https://doi.org/10.1016/j.eja.2011.06.006

A model for simulating the height of rice plants

Roberto Confalonieri, Simone Bregaglio, Alexandra Stella Rosenmund, Marco Acutis and Igor Savin
European Journal of Agronomy 34 (1) 20 (2011)
https://doi.org/10.1016/j.eja.2010.09.003

Comparison of sensitivity analysis techniques: A case study with the rice model WARM

R. Confalonieri, G. Bellocchi, S. Bregaglio, M. Donatelli and M. Acutis
Ecological Modelling 221 (16) 1897 (2010)
https://doi.org/10.1016/j.ecolmodel.2010.04.021

A proposal of an indicator for quantifying model robustness based on the relationship between variability of errors and of explored conditions

R. Confalonieri, S. Bregaglio and M. Acutis
Ecological Modelling 221 (6) 960 (2010)
https://doi.org/10.1016/j.ecolmodel.2009.12.003