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Summary &mdash; In breeding for hybrid varieties, top-cross mating designs are widely used to estimate the combining
ability of inbred lines as a measure of their potential as parents of commercial hybrids. A multiplicative model is pro-
posed to take into account interaction effects in addition to general combining ability effect (GCA) estimates to predict
the values of potential line x line single cross hybrids. The efficiency of this approach was studied on a set of 58 maize
inbred lines representing a wide range of germplasm. These lines were crossed to 4 tester lines and hybrids were
evaluated for silage yield. The value of line x line hybrid values were predicted according to several models with and
without multiplicative terms. The efficiency of the models was estimated by comparing the predicted and the observed
values for a sample of 88 line x line reference hybrids. Predicted values were significantly correlated with observed
values for every model. For a given set of testers, models which included multiplicative terms were most efficient. A
simulation approach confirmed this conclusion for the best hybrids. Thus, this type of model provides a possibility to
increase the efficiency of prediction without requiring additional measurements and should be tested for various germ-
plasms.

hybrid value prediction / interaction model / top-cross design

Résumé &mdash; Modélisation des interactions et prédiction de la valeur d’hybrides F1 à partir de plans de croise-
ments top-cross. Dans les programmes de sélection de variétés hybrides, les plans de croisement de type top-cross
sont largement utilisés pour estimer l’aptitude à la combinaison de lignées, et donc évaluer leur intérêt en tant que pa-
rents d’hybrides. Un modèle multiplicatif est proposé dans cette étude pour intégrer les effets d’interaction entre li-

gnées et testeurs dans la prédiction de la valeur des hybrides pouvant être créés à partir des lignées testées. L’effica-
cité de cette approche a été étudiée pour un ensemble de 58 lignées de maïs représentant une large variabilité
génétique. Ces lignées ont été croisées à 4 testeurs et la productivité des hybrides pour l’ensilage a été évaluée. La
valeur des hybrides entre lignées a été prédite à partir de différents modèles, incluant ou non des termes multiplica-
tifs. L’efficacité des modèles a été évaluée en comparant les valeurs prédites et les valeurs observées pour un en-
semble de 88 hybrides entre lignées. Les valeurs prédites et observées étaient corrélées de façon significative pour
tous les modèles. Pour un ensemble de testeurs donné, les prédicteurs les plus efficaces faisaient intervenir des
termes multiplicatifs. Ce résultat a été confirmé au niveau des meilleurs hybrides à l’aide d’une approche par simula-
tion. Ce type de modèle offre ainsi la possibilité d’améliorer l’efficacité de la prédiction sans nécessiter d’observations
supplémentaires, et devrait donc être testé pour différents types de matériel génétique.

prédiction de la valeur hybride / modélisation des interactions / plans top-cross



INTRODUCTION

Since Shull (1908) introduced the basic concepts
of hybrid breeding, inbred lines have been devel-
oped according to various schemes (see Hal-
lauer, 1990 for a review) in order to provide par-
ents for hybrid varieties of maize and other

species. The increase in the number of parental
lines available in a given species (or for given
conditions) raises the problem of detecting the
best F1 hybrids, since the test of all possible com-
binations (N(N-1)/2 if N is the number of lines)
rapidly becomes unfeasible. Thus, the choice of
tested combinations has a dramatic impact on the
success of a hybrid breeding program.

Jenkins and Brunson (1932) suggested the
use of top-cross tests (ie crosses between in-
breds and a variety population) to achieve pre-
liminary tests of new lines. The efficiency of this
approach was illustrated by Sprague and Tatum
(1942). These authors introduced the partitioning
of hybrid values in terms of general and specific
combining ability (GCA and SCA, respectively).
They defined GCA of line i as the average per-
formance of this line in hybrid combinations.
SCA of the cross between line i and line j was
defined as the deviation from the performance
expected on the basis of the GCA of the lines (ie
the interaction effect of the cross). Results illus-
trated that top-cross tests were efficient in select-
ing for GCA. Sprague and Tatum (1942) also
suggested the simultaneous use of several test-
ers to obtain GCA estimates not influenced by
SCA effects with a given tester.
Once efficient screening of lines for general

combining ability has reduced the number of hy-
brid potential parents, selection for SCA can be
achieved by single-cross combination tests

(Lonnquist and Rumbaugh, 1958). Most often,
new lines are crossed to several classical com-
mercial hybrid parents (elite lines), in order to
find suitable hybrid combinations.

In a previous study, we illustrated that such
devices could also be used to gauge with some

accuracy the performance of untested line x line
hybrids (Charcosset et al, 1990). From the basic
hypothesis that line x tester SCA effects could

provide information about line x line SCA, we es-
tablished a significant relationship between F1
hybrid performance and an index of the distance
between the parents computed from line x tester
SCA estimates (this distance was derived from
Hanson and Casas, 1968). However, theoretical
limitations in the use of this method were pointed
out: high distances are always associated with

high heterotic values, but low distances may also
be associated with high heterotic values. Dis-

carding hybrids on the basis of low distances be-
tween parents may, therefore, be a hazardous
practice. Thus, the aim of this study was to

present a more attractive way to use line x tester
SCA estimates to predict the SCA of line x line
hybrids. In this preliminary study we explore a
wide range of maize hybrids, including intra-

group (flint, dent), and inter-group hybrids.

MATERIALS AND METHODS

Experimental design

Parental lines

We considered a set of 58 maize inbred lines repre-
sentative of the lines which can be used in northern
France. This set included typical European flint lines,
such as lines F7 and Ep1, some of their derivatives
and derivatives of the line F2, lines from Northern
American origin (W401, CM7, A641 etc), mixed types
resulting from crosses between lines of previous origin
(eg Co255), and lines derived from exotic germplasm
(eg F285, which results from a second backcross gen-
eration between the line F7 and the Argentine popula-
tion F64). The ith line among the 58 will be further
referred to as Li.

Test crosses

All lines were crossed to 4 elite tester lines: the widely-
used European flint F2 (further referred to as T2), a
European flint derived from line F7: F283 (T1), an early
dent line: F252 (T3) (derived from a cross between
Co125 and F186) and a widely-used line from the io-
dent group (T4). Testers were used as female parents
to obtain homogeneity in seed size. Some of the pa-
rental lines were related to testers T1, T2 or T3; the av-
erage relationship coefficients (Malecot, 1969) be-
tween the 58 lines and these testers were 0.079,
0.052 and 0.054, respectively and never exceeded
0.50. Test-crosses (Li x Tk), as well as tester x tester
crosses and tester per se performances, were used to
construct different predictors (described below) of the
hybrid value associated with crosses between pairs of
parental lines (Li x Lj).

Estimation of the efficiency
of predictors using reference hybrids

The 58 parental lines were used to generate a set of
88 hybrids (each line was used as a parent for = 3 hy-
brids). This set was used to test the efficiency of pre-
dictors. The average relationship coefficient between
hybrid parents was 0.04; here again, no relationship
coefficient exceeded 0.5.



Yield trials

The experiment was conducted in 1988 at Gif-sur-
Yvette (35 km south of Paris). Since a single location
was used for this study, results should be considered
as a support to present a method, and the actual effi-
ciency of the approach should be re-examined in a
multi-environmental study. Due to differences in matur-
ity between testers, the test-crosses were evaluated in
4 different trials, each corresponding to a given tester.
Reference hybrids were also evaluated in a separate
trial. The 5 trials took place next to each other in a ho-
mogeneous experimental field and were sown on the
same day. Each trial was planted in a randomized

complete block design with 3 replications. Each plot
consisted of one row 5-m long and with 0.8 m between
rows, planted at a density of 90 000 pl/ha. Total green
matter yield (silage fresh yield) was evaluated for each
plot, when plant moisture averaged 65 to 70% for a
given trial. Plant moisture was estimated for each plot,
using a sample of &ap; 0.58 kg, dried at 35°C for 18 h and
then 105°C for 12 h. Total dry matter (DM) yield was
then calculated.

Variance analysis of the trials

Variance analyses were performed for each trial to test
the significance of genotype effects. These effects
were considered as fixed, and the variation among
genotypes

where gi is the centered genetic effect of genotype i,
ng is the total number of genotypes) was evaluated,
using the expectation of genotype mean square (see
Scheffé, 1959). Moreover, an analysis of variance in-
volving all 4 testers was performed, in order to investi-
gate line x tester interaction effects using the classical
model for factorial designs:

where Yit is the value of the cross between line i and
tester t, &alpha;i and &beta;t are the main effects of line i and test-
er t, respectively, and øit is the interaction effect. Al-

though both trial and tester effects were confounded,
preliminary investigations were carried out using check
plots (hybrid cultivars Dea, Brûlouis and Mona). These
analyses showed significant differences in trial effects.
A negative relationship (over the trials) was observed
between the mean of the checks and the mean of the
test-crosses. That is to say that the average value of
the checks in a given trial was high when the average
value of the test-crosses in this trial was low. This
could be explained by competition effects. However,
when considering the checks, the interaction effects
between cultivars and trials were not significant. Thus
we may expect that, when considering parental lines in
test-crosses, the interaction between lines on one

hand and testers or trials on the other hand are most-

ly due to line x tester interactions. Henceforth we will
call the interaction effect line x tester interaction, for
reasons of simplicity, although strictly speaking this
also involves line x trial interaction.

Computation of predicted values

The 4 tester trials were used to generate 15 data
sets: 4 single tester data sets ([T1], [T2], [T3], [T4]), 6
tester pairs ([T1, T2], [T1, T3], [T1, T4], [T2, T3], [T2,
T4], [T3, T4), 4 tester triplets ([T1, T2, T3], [T1, T2, T4],
[T1, T3, T4], [T2, T3, T4]) and the 4 testers ([T1, T2, T3,
T4]). For each data set, predicted values were com-
puted using the classical linear model based on the
estimation of the GCA of the lines. For data sets in-

cluding at least 2 testers, a bilinear model of interac-
tion effects was added to the model to take into ac-
count the effect of line x tester interaction (SCA).

Prediction using linear models

If the testers included in a given data set are ’repre-
sentative’ of the tested lines, the main effect of lines
(model [1]) can be considered as an estimate of their
general combining ability (see proposal of Jenkins
and Brunson, 1932, in the introduction section). Thus,
the predicted value of the hybrid between lines i and j
(&jadnr;ij) can be computed as:

where &jadnr; and a are the parameters estimated for mod-
el [1]. If Yij is the observed value of the hybrid be-
tween lines i and j, &jadnr;ij = Yij - &jadnr;ij will subsequently be
considered as an estimate of cross i ·j SCA.
A similar approach can be used when a single test-

er (T) is considered. In this situation, &jadnr;i will be the es-
timated genetic effect of the cross between line i and

tester t. A total of 15 such predictors were computed
(one for each data set).

Bilinear models of interaction effects

Bilinear models of interaction effects were described

by Mandel (1971), and used to analyse genotype x
environment interactions (see Freeman, 1973;
Crossa et al, 1990). The basis of these models is to
partition the interaction between 2 factors (for in-

stance øit in model [1]) as a sum of multiplicative
terms involving parameters specific to each of the in-
teracting factors:

where R is the number of multiplicative terms, &gamma;ri and

&lambda;rt are the parameters specific to levels i and t of the 2



interacting factors, for the rth multiplicative term. This
model shows analogies with principal component
analysis (Perkins, 1972) and can be used to provide
graphical representations of the levels of the interact-
ing factors (eg the &gamma;1 versus &gamma;2 plots for lines). This
model can be adapted to the particular case of diallel
designs to take into account the dependency between
the 2 interacting factors. If one assumes no reciprocal
effects, interaction (SCA) between lines i and j will be
written:

y parameters can be estimated from a test-cross de-
sign if at least 2 testers are considered, and tester x
tester crosses (including tester per se values) are in-
cluded in the analysis. Otherwise &gamma;ri and &lambda;rt cannot be
compared and the symmetry is not respected. If the

preceding conditions are respected, the data set used
for prediction can be represented as in table I (in a sit-
uation with 2 testers) and can be considered as a dial-
lel design with missing data. As in the case of the lin-
ear model, the first step in prediction will be to use
available data (Yit) to estimate parameters for the

complete model:

And then to use the estimated parameters (&jadnr;, &jadnr;i, &gamma;ri)
to compute predicted values (&jadnr;ij) for missing data:

Model [5] requires the estimation of (R + 1)(L + T - R/
2) independent parameters, so up to (T - 1) multiplica-
tive terms can be introduced in the model for a given
design (including T testers). If (T - 1) multiplicative
terms are introduced in the model, the number of inde-
pendent parameters to be estimated is equal to the
number of observed data and the parameter estima-

tions can be analytically written as functions of the
data. In this situation, &jadnr;it = Yit.

If fewer than (T - 1) multiplicative terms are intro-
duced, estimation requires the use of an iterative alter-
nating least squares procedure (see Denis, 1991). A
special software package (INTERA) was written by
Decoux and Denis (1991) and used in the present
study. Problems in parameter estimations (aberrant
estimates) were observed when using all the data of a
given data set, because of the number of data in-

volved and their structure. Thus, local estimates were
computed: to predict Yij value (compute &jadnr;ij), only test-
er x tester crosses (and tester per se values), i x test-

ers and j x testers were used for parameter estimation.
The estimations were made successively for each hy-
brid. The required number of iterations was very differ-
ent according to the hybrid considered.

Seventeen new models of this kind were defined

according to the subset of testers and the number (R)
of multiplicative terms considered. The 32 possible
models are further described using [R;7] notation (see
table IV), R being the number of multiplicative terms
introduced in the model (0 for the linear model) and T
that of the tester considered .

Evaluation of the efficiency of the predictors

Predicted/observed plots
and empirical correlation

The first approach for comparing the different models
was to plot, for each of the 32 models, the predicted
values of the 88 reference hybrids against the ob-
served values. Note that predicted values do not de-
pend on the observed values of the reference hybrids.
We also computed the resulting (empirical) correlation
coefficient.

Calculation of the prediction variances
and "heuristic" correlation

In order to go further in the comparison of the different
models, the variances of the predictions they give
were calculated. When there was no multiplicative
term (R = 0), the model [5] is linear and the variance is
known.

For the other models, the variances were calculated
numerically using an asymptotic linear approximation
(see Appendix). The experimental variation of testers
x testers was not taken into account, since this infor-
mation was used to compute the predicted value of
every line x line potential hybrid. Thus, we shall say
that the variances are calculated conditionally to the
observation of the tester x tester crosses. Note howev-
er that the experimental variance in the estimation of
the tester x tester crosses should affect the efficiency
of the prediction when using multiplicative models.



The estimates of the prediction variances were
used to represent the 88 hybrids by confidence ellip-
ses (at an a% risk level) in the plot of predicted vs ob-
served values. The center of each ellipse corresponds
to the predicted and observed values. Also, they were
used to compute a ’heuristic’ correlation coefficient;
this coefficient is an estimation of the correlation which
would be obtained, if there was no random variation

(no error) disturbing the estimations of the observed
values and initial data. This heuristic correlation shows

analogies with the genotypic correlation (for the situa-
tion where genotypes are treated as random). If it is
assumed that predicted and observed values are cen-
tered, then:

where N is the total number of reference hybrids (88 in
our experiment), Pi is the predicted value of the ith ref-
erence hybrid, Oi is its observed value, &sigma;2p the estima-
tion of the error variance of the predicted values (com-
puted as the mean of the individual prediction
variances), and &sigma;2o the estimation of the error variance
of the observed values. This formula is justified by the
fact that the expectations of &Sigma;Ni=1 PiOi, &Sigma;Ni=1 P2i - N&sigma;2p
and &Sigma;Ni=1 O2i - N&sigma;2o are the sum of products and sums
of squares that would be obtained if there was no ran-
dom variation.

Simulation studies

Furthermore, to compare the efficiencies of the differ-
ent models to detect the best F1 hybrid combinations,
a simulation study of 500 experiments was conducted.
For each experiment, random error terms were gener-
ated under the assumption of a normal distribution

(with variance &sigma;2o) and added to the observed values to
generate deviated observed values. Similar deviations
were also applied to predicted values using the ade-
quate variances. For each experiment the n hybrids
(n = 4, 8, 16, 24), which had the highest deviated pre-
dicted values were determined. Their average deviat-
ed observed value was computed. For each model

and each selection intensity, these values were aver-
aged over the 500 experiments.

RESULTS

Variance analysis of the trials

In all trials, the variation among hybrids was
highly significant (table II). The variability among
hybrids appeared greater for the T1 (F283) and
T2 (F2) testers than for the other 2 testers (T3
(F252) and T4).
The values of the F-statistic for the effects of

lines, testers and line x tester (more precisely
line x (tester and trial); see previous section) in-
teractions were highly significant (table III). The
occurrence of interaction effects in this type of
design was consistent with results reported for
hybrid seed yield in maize (see Hallauer and Mi-
randa, 1981, for a review).

Predicted/observed plots
and empirical correlation

The observation of the predicted/observed plots
has shown that the different models have very
different efficiencies. Illustrations are given in

figure 1 for models ([0; T2], [0; T4], [0; T2, T3], [2;
T1T2T3], [0; T1, T2, T3, T4] and [3; T1, T2, T3,
T4]). For instance, the relationship appears
much better for model [2; T1, T2, T3] than for

model [0; T4]. Notice that for all the plots the
predicted value of the hybrids is generally super-
ior to the observed value. This is due to the fact

that testers are elite lines, with a higher GCA
than the tested germplasm. This is especially
true for tester T4.



The empirical correlation coefficients between
predicted and observed values depended on the
testers considered (table IV). When considering
only predictions obtained from single tester infor-
mation, prediction appeared less efficient for T4
than for other testers. This might be due to the
fact that this tester was not related to any tested
line (see theory by Hull, 1945; and Rawlings and
Thompson, 1962).
When considering the models which took into

account 2 testers and no multiplicative terms, the
best result was obtained for the model [0; T2, T3]
(F2 and F252). When 3 testers were considered,
the best result was obtained for combination [0;
T1, T2, T3]. Results obtained for models [0; T2,
T3] and [0; T1, T2, T3] appeared rather similar,
and superior to the model [0; T1, T2, T3, T4]. Al-
though the results of these comparisons were
not established statistically (because data im-

plied in the estimation of &rho;2 for different models

were not independent), the best predictor involv-
ing several testers was clearly superior to the
best single tester predictor. This result is consis-
tent with the suggestion of Sprague and Tatum
(1942) (see Introduction). Even when several
testers are taken into account, the choice of test-
ers has an important incidence on prediction effi-
ciency. Introducing tester T4 information in pre-
diction computation seemed to lead to a

decrease of the relationship between predicted
and observed values, when compared to predic-
tions not including this tester’s information. The
best relationships were obtained when testers T2
and T3 were taken into account simultaneously,
and when T4 was not included in prediction com-
putation.

For all tester combinations, the estimated val-
ue of the correlation increased with the increase
of the number of multiplicative terms included in

the model. This was not expected a priori since
predicted and observed values were obtained in-
dependently (contrary to classical multiple re-

gression analyses). The question of the test of
the significance of the increase of the correlation
raises methodological problems associated with
the specificity of this approach which cannot be
assimilated to a multiple regression study (in
which observed values are used to determine re-

gression coefficients). However, the fact that in

all cases increases were observed (which was



not expected a priori) should be considered as an
initial indication of the efficiency of this method.
The largest increases were obtained for combina-
tion [T2, T3, T4] (from &rho;2E = 40.2% for [0; T2, T3,
T4] to &rho;2E = 50.7% for [2; T2, T3, T4]) and for com-
bination [T1, T2, T3, T4] (from &rho;2E = 43.2% for [0;
T1, T2, T3, T4] to &rho;2E = 53.3% for [3; T1, T2, T3,
T4]). The best relationship was obtained for [2;
T1, T2, T3] (&rho;2E = 54.0%), which was superior to
[0; T1’ T2, T3] (&rho;2E = 49.4%). Thus, the largest in-
creases in prediction efficiency were pointed out
when flint and dent testers were considered si-

multaneously. This is related to the fact these
testers combinations generated the most impor-
tant interaction effects (results not presented).

Note that large deviations between observed
values and their corresponding predicted values
by model [0; T1, T2, T3, T4] were obtained for hy-
brids which were overestimated by the prediction
(considering centered predicted and observed

values). Predictor [3; T1, T2, T3, T4] led to smaller
deviations for 3 hybrids whereas the values of 3
other hybrids were still overestimated: these hy-
brids had the same predicted values with [3, T1,
T2, T3, T4] and with [0; T1, T2, T3, T4].

Error variances and ’heuristic’ correlations

For models without multiplicative terms, the error
variance is constant as illustrated in figure 2 by
the constant width of the confidence ellipses.
This is no longer true for models including multi-
plicative terms (see in figure 2 the differences in
the width of the confidence ellipses). For a given
combination of testers, the variance of the pre-
dicted values increased with the increase in the
number of multiplicative terms; this is a general
property associated with the introduction of addi-
tional terms in models.

The results obtained when comparing &rho;2H of
the different models were similar to those ob-

tained when comparing &rho;2E. Even when no multi-
plicative terms were considered, the best predic-
tors involving several testers were superior to the
best single tester predictors. This illustrates the
fact that the superiority observed for empirical
correlations was not due solely to a greater num-
ber of replications but also had a genetic basis.
The best results were obtained for predictors [2;
T1, T2, T3], [1; T2, T3], and [3; T1, T2, T3, T4].

When considering the 3 testers [T1, T2, T3], the
predictor [2; T1, T2, T3] led to better results than
the predictor [0; T1, T2, T3] (&rho;2H = 76.7% and &rho;2H
= 66.4%, respectively). Thus, the introduction of
multiplicative terms in prediction computation
could lead to an important improvement if test-

cross values were "perfectly known" (no experi-
mental error). However, models including multi-
plicative terms lead to higher error variances.
This is consistent with the differences between

[2; T1, T2, T3] and [0; T1, T2, T3] which are
greater for the heuristical correlation coefficient
than for the empirical coefficient.

Simulation studies

Results of the simulation studies are given in

table V for 4 selection intensities (4, 8, 16 and
24 hybrids selected out of the 88). In all cases,

except model [0; T4], the mean of selected hy-
brid was much larger than the general mean of
the 88 hybrids (16.5, see table II). The models
which lead to the higher values of selected hy-
brids were [1; T2, T3] and [2; T1, T2, T3], regard-
less of the selection intensity; this was consis-
tent with the correlation studies.

When comparing single tester predictors, T3
and T1 were more efficient than T2, itself more
efficient than T4. So, the ranking of models on
the basis of prediction efficiencies was not the
same as the ranking obtained in the correlation
studies: T4 was still the least efficient predictor
but T2 was superior to T3 and T1. When no mul-
tiplicative terms were taken into account, the
model [0; T2, T3] was the most efficient of mod-
els including 2 testers, whereas rather poor re-
sults were obtained for [T2, T4] (at least for high
selection intensities); the best triplet was [T1, T2,
T3]. For a given number of testers, the best

models were similar to the best ones based on
correlation criteria.

If we consider the highest selection intensity,
and a given combination of testers, the predictor
which includes the maximum of multiplicative
terms appeared superior to the predictor with
no multiplicative terms for 9 combinations out of
11. Thus, according to this criterion, the intro-

duction of multiplicative terms in prediction com-
putation seemed to improve the efficiency of se-
lection.







DISCUSSION

Choice of testers

Although a single location was considered, and
results on the choice of testers should be recon-
sidered in a multi-environmental study, our re-
sults were consistent with published studies (see
Hallauer and Miranda, 1981) which reported that
the choice of the testers has a strong influence
on selection efficiency. Theoretical considera-

tions about the choice of testers have been prov-
ided by Hull (1945) and Rawlings and Thompson
(1962) who showed that the best tester should
carry the greatest amount of recessive alleles

segregating in the tested germplasm. Empirical
studies did not really confirm the usefulness of
the proposed criteria (Hallauer and Miranda,
1981). However, the fact that in our study T4 was

the least efficient tester might be related to the
fact that it was not related to any tested lines

(contrary to other testers).
The simultaneous use of several testers ap-

peared to increase prediction efficiency when
compared to best single tester predictors, even
when using models based only on GCA estima-
tion. This was consistent with the proposal of

Sprague and Tatum (1942) that the use of sever-
al testers should provide greater security when
estimating tested germplasm GCA. In our study,
the best tester combinations included lines which
were related to the tested germplasm and which
are ’complementary’ (from different origins).

The use of line x tester specific effects
through multiplicative models

The use of several testers also makes it possible
to estimate line x tester specific effects (SCA). A
previous experiment had shown that these ef-
fects could be taken into account to predict the
values of line x line hybrids (Charcosset et al,
1990), in addition to GCA estimates. The method
which was proposed was to use SCA effects to
compute a distance index similar to Hanson and
Casas’ distance (Hanson and Casas, 1968). This
distance was correlated significatively to line x
line SCA. However, it was discussed theoretical-

ly that when 2 testers are considered, this rela-
tionship is ’triangular’: the highest distances cor-
respond to the highest SCA but the lowest
distances may correspond to any SCA value

(high, intermediate or low). Thus the use of this
distance in linear combination with GCA esti-
mates may lead to an underestimation of the val-
ue of some hybrids.
A theoretical study (Charcosset, 1990) of this

problem showed that multiplicative models were
a more convenient way to take line x tester

specific effects into account. It was demonstrated
that the highest predicted SCA corresponded to
the highest actual SCA, the lowest predicted
SCA corresponded to the lowest actual SCA and
the intermediate predicted SCA (zero) corre-



sponded to any actual SCA value (high, interme-
diate or low). Thus, all major changes in predict-
ed values associated with the use of a multiplica-
tive model in addition to GCA estimates should
lead to an increase in prediction accuracy.

Even though results should be reconsidered in
a multi-environmental study, the present study is
consistent with preceding theoretical conclusions:
according to all criteria, the use of multiplicative
models increased prediction efficiency. Contrary
to multiple regression studies, no systematic in-
crease in the correlation was expected with the
introduction of multiplicative terms in the predic-
tion formula, since observed values are not taken
into account in the computation of the coefficients
associated with multiplicative terms (these coeffi-
cients are computed from test-cross data). More-
over, the study of models [0; T1, T2, T3, T4] and
[3; T1, T2, T3, T4] illustrated that most important
changes in predicted values due to the introduc-
tion of the multiplicative model lead to a better
concordance with observed values. Thus, even if

the question of a statistical test remains open,
this study should be considered as an indication
of the efficiency of multiplicative models of inter-
action to enhance prediction efficiency without re-
quiring additional measurements.

The usefulness of multiplicative models should
depend on several factors, including the germ-
plasm of interest (see further) and the precision
of the experimentation. The introduction of multi-
plicative terms in prediction increases the error
variances of predictors, depending on the esti-

mated error variance in the initial data. Thus, the
difference between the efficiencies of multiplica-
tive and non-multiplicative predictors depends on
the precision of the initial data. In this study, us-
ing 3 replications for a trait of relatively low herita-
bility, this precision appeared good enough to un-
derline the efficiency (estimated by empirical
correlations) of the approach.

Incidence of the tested germplasm
on prediction efficiency

The germplasm considered for this study can be
considered as rather wide, and reference hybrids
included both intra-group and inter-group hybrids.
In this situation, it was estimated that if there was

no error variation disturbing the estimation of

yield values, the most efficient predictor would
explain up to 77% of the variation among F1 hy-
brids when using only 3 tester lines. For this data

set, multiplicative models appeared to increase
prediction efficiency from 66 to 77%. Increases
in prediction efficiency associated with multipli-
cative terms should be dependent on the germ-
plasm of interest and the testers which are con-
sidered. First, possible increases in prediction
efficiency will depend on the relative magnitude
of GCA and SCA effects. They cannot be impor-
tant if SCA effects are small when compared to
GCA effects. Secondly, it can be demonstrated

theoretically (Charcosset, 1990) that multiplica-
tive models are very efficient for predicting the
value of hybrids for which one parent line at

least is highly related to a tester line, and are
not efficient for original germplasm (the 2 parent
lines being poorly related to any tester line).
Thus, multiplicative models of interaction should
be extremely efficient for sets of lines which are
structured in homogeneous groups, each group
being represented by a tester line.

Further experimental studies should be car-
ried out with various sets of lines to define in

which conditions multiplicative models will be ef-
ficient. Two kinds of studies can be considered.
If heterotic groups are not clearly established for
the germplasm of interest, testers should be
chosen to give the best representation of the

tested germplasm, and prediction can be

achieved as presented in this study. If heterotic

groups are clearly established for the germ-

plasm of interest, the lines and the testers be-
longing to one group could be crossed to the
testers belonging to the complementary group,
and vice versa. This is classically done in many
breeding programs, the testers being elite lines
which represent the diversity within the heterotic
groups. Following an approach similar to that

described in this study, this design can be con-
sidered as a factorial design between the testers
and lines of one group and the testers and lines
of the other group, with missing data (line x line
hybrids). For this factorial, interactions can be

analyzed following model [3] and used to predict
the SCA of the line x line hybrids. Comparison
with the actual values of a set of line x line hy-
brids would contribute to analyzing the efficiency
of interaction multiplicative models to increase
prediction efficiency.
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APPENDIX

Computation of variances

For a given model, the predicted value of the hy-
brid (i,j) can be written as:

where Yit, (Yjt) are the observed values of cross-
es between line i and testers (line j and testers)
and Ytt’ are the observed values of the crosses
between testers. The function &Phi; is not known ex-

plicitly and is only numerically computed, so it is

impossible to derive an expression of the vari-
ance. The variance computation is based on the
linear approximation of the &Phi; function about the
observed values:

As we only want to compare the predictions of
the different hybrids, the variance of the con-
trasts has been approximated as:

ait and bjt values were computed numerically us-
ing [2] with 2 values for &Delta;Yit (&Delta;1 = 0.05&sigma;e and

&Delta;2 = 0.10&sigma;e). The validity of the linear approxi-
mation in [2] is supported by the fact that ait(&Delta;1)
(bjt (&Delta;1)) and ait(&Delta;2) (bjt(&Delta;2)) are highly correlat-
ed.
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